Digital Signal Processing SS 2019/20 Exercise Sheet 6

Due date: 02.07.2019 (time of the lecture)

Problem 1

Compute the Fourier Transforms of the time-continuous signals

a)
$$x(t) = e^{-100|t|}$$
.
b) $x(t) = \begin{cases} 1 & \text{if } -a \le t \le a; \\ 0 & \text{otherwise,} \end{cases}$ with $a > 0$.
c) $x(t) = \begin{cases} -|t| + 1 & \text{if } 0 \le |t| < 1; \\ 0 & \text{otherwise.} \end{cases}$

Problem 2

The time-continuous signal $x(t) = e^{-100|t|}$ is sampled at a sampling rate of 500/s, yielding the discrete-time signal $x_1[n]$. Draw the magnitude of $X_1(e^{j\omega})$, the DTFT of $x_1[n]$.

Repeat for the sampling rate 1000/s.

Problem 3

The time-continuous signal $x_c(t) = \sin(20\pi t) + \cos(40\pi t)$ is sampled with a sampling period T, obtaining the discrete-time signal $x[n] = \sin(0.2\pi n) + \cos(0.4\pi n)$.

a) State one value of T that led to the given result.

b) Is the value of T unique? If not, give all possible values of T.

Problem 4

The Nyquist rate of the time-continuous signal x(t) is Ω_s . Find the Nyquist rates of the following signals:

- a) x(2t).
- b) x(t/3).
- c) $x^2(t)$.
- d) x(t) * x(t).