Digital Signal Processing SS 2019/20 Exercise Sheet 1

Due date: 1.5.2019

Exercise 1

A complex number can be represented in classic cartesian, polar, vector, and matrix form as follows:

$$
z=a+\mathrm{j} b, \quad z=r \mathrm{e}^{\mathrm{j} \theta}, \quad z=\binom{a}{b}, \quad z=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right) .
$$

Rewrite the matrix form using the polar coordinates r, θ of z in place of the cartesian coordinates a, b. How can one compute the product of two complex numbers using the matrix form? Express the inverse $\frac{1}{z}$ using each representation.

Exercise 2

Calculate

$$
z=\frac{2-\mathrm{j} 3}{5+\mathrm{j} 12}
$$

in classical, point, polar, and matrix form.

Exercise 3

Simplify the following complex terms and give the result in both cartesian and polar form.
a) $(1-\mathrm{j})^{43}$
b) $2 \mathrm{e}^{-32 \pi \mathrm{j} / 3}$
c) $3 \mathrm{e}^{\mathrm{j} \pi / 3}+4 \mathrm{e}^{-\mathrm{j} \pi / 6}$
d) $\frac{z-1}{z+1}, z \in \mathbb{C} \backslash\{-1\}$.

Exercise 4

Solve the following equations for $z \in \mathbb{C}$ and check the solution with the Matlab-function roots.
a) $z^{2}+2 z+2=0$,
b) $z^{2}+2 \mathrm{j} z=1$,
c) $z^{n}=1-j$.

Exercise 5

Plot the following shapes in one figure using the Matlab plot command with complex numbers as arguments.
a) Plot a blue unit circle.
b) Plot a black triangle that visualizes the addition $z_{1}+z_{2}=z_{3}$ with $z_{1}=-1-\mathrm{j}$ and $z_{2}=0.5+2 \mathrm{j}$.
c) Plot a red spiral starting at the origin. The distance d to the origin grows linearly with the angle and has 3 rotations within the unit circle.
d) Plot a green spiral. Now d grows exponentially with the angle, has again 3 rotations and starts at $\frac{1}{10}+\mathrm{j} 0$.

The result should look like this:

Exercise 6

a) Give the 2D-matrix that represents a rotation by angle ϕ. Multiply this matrix with another matrix that represents an rotation by an angle ψ. Find 2 trignometric identities from the result.
b) Prove the trignometric identities again using complex calculus.
c) Show, that $\cos \phi=\frac{1}{2}\left(e^{j \phi}+e^{-\mathrm{j} \phi}\right)$ Find a similar expression for $\sin \phi$.

