Introduction to Applied Scientific Computing using MATLAB

Mohsen Jenadeleh

In this lecture, slides from MIT, Rutgers and Waterloo University are used to form the lecture slides

Matrix Algebra

- dot product
- matrix-vector multiplication
- matrix-matrix multiplication
- matrix inverse
- solving linear systems
- least-squares solutions
- determinant, rank, condition number
- vector & matrix norms
- iterative solutions of linear systems
- examples
- electric circuits
- temperature distributions

Operators and Expressions

operation	element-wise	matrix-wise
addition	+	+
subtraction	-	-
multiplication	.*	*
division	./	/
left division	. \	\mathbf{N}
exponentiation	.^	^
transpose w/o co	mplex conjugation	on .'
transpose with co	omplex conjugati	ion '
		 ↑
>> help / >> help preced	ence alg	ed in matrix gebra operations

>> A = A =	[1 2; 3	4]		$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix}_{=}$	[7 10]
1	2			$\begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix}$	[15 22]
3	4				
>> [A,	A.^2; A	^2, A*A]	% form su	b-blocks
ans =					
1	2	1	4		
3	4	9	16		
7	10	7	10	<pre>% note A^</pre>	2 = A * A
15	22	15	22		
>> B =	10.^A;	\ 1	<i>B</i> =	$\begin{bmatrix} 10^1 & 10^2 \\ 10^3 & 10^4 \end{bmatrix}$	
// [D,	IOGIO (B)]			
ans =	10	10	0	1	2
	1000	1000		T 2	ζ
	TOOO	TOOO	U	3	4

dot product

The dot product is the basic operation in matrix-vector and matrix-matrix multiplications

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \quad \longleftarrow \begin{array}{c} \mathbf{a}, \mathbf{b} \text{ must have the same} \\ \text{dimension} \end{array}$$

$$\mathbf{a}^{T}\mathbf{b} = [a_{1}, a_{2}, a_{3}] \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix} = a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3}$$

$$\mathbf{a}^{T}\mathbf{b} = \mathbf{a}' \mathbf{b} = \mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot' * \mathbf{b}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathsf{MATLAB}$$
notations

complex-conjugate transpose, or, hermitian conjugate of **a**

1

$$\mathbf{a}^{\dagger} \mathbf{b} = \begin{bmatrix} a_1^*, a_2^*, a_3^* \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = a_1^* b_1 + a_2^* b_2 + a_3^* b_3$$

$$\mathbf{a}^{\dagger} \mathbf{b} = \mathbf{a}^{H} \mathbf{b} = \mathbf{a}' * \mathbf{b}$$

$$\uparrow \qquad \uparrow$$

$$\mathsf{math}$$

$$\mathsf{notations}$$

$$\mathsf{MATLAB}$$

$$\mathsf{notation}$$

for real-valued vectors, the operations ' and .' are equivalent

dot product for complex-valued vectors


```
>> a = [1; 2; -3]; b = [4; -5; 2];
>> a'*b
ans =
    -12
>> dot(a,b) % built-in function
ans = % same as sum(a.*b)
    -12
```

matrix-vector multiplication

matrix-vector multiplication

combine three dot product operations into a single matrix-vector multiplication

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$A = b$$

>> A =	[4 1 2; 3	L -1 1; 2 1 1]
A =			
4	1	2	
1	-1	1	
2	1	1	
>> B =	[5 -1 -3	; -4 3 1; -7	2 6]
в =	-		-
5	-1	-3	
-4	3	1	
-7	2	6	
>> C =	A*B		
C =			
2	3	1	
2	-2	2	
-1	3	1	

C(i,j) is the dot product of *i*-th row of A with *j*-th column of B

note:

 $A*B \neq B*A$

$$\begin{bmatrix} 4 & 1 & 2 \\ 1 & -1 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 5 & -1 & -3 \\ -4 & 3 & 1 \\ -7 & 2 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 2 & -2 & 2 \\ -1 & 3 & 1 \end{bmatrix}$$

 $2 \times (-1) + 1 \times 3 + 1 \times 2 = 3$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

Rule of thumb: (NxK) x (KxM) --> NxM A is NxK B is KxM then, A*B is NxM

vector-vector multiplication

$$\begin{bmatrix} a_1, a_2, a_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

$$(1x3)x(3x1) --> 1x1 = scalar$$

row * column = scalar

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \begin{bmatrix} b_1, b_2, b_3 \end{bmatrix} = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix}$$

(3x1)x(1x3) --> 3x3 column * row = matrix

vector-vector multiplication

solving linear systems A x = b

Linear equations have a very large number of applications in engineering, science, social sciences, and economics Linear Programming – Management Science Computer Aided Design – aerodynamics of cars, planes Signal Processing, Communications, Control, Radar, Sonar, Electromagnetics, Oil Exploration, the only practical Computer Vision, Pattern & Face Recognition way to solve very large systems is Chip Design – millions of transistors on a chip iteratively Economic Models, Finance, Statistical Models, Data Mining, Social Models, Financial Engineering Markov Models – Speech, Biology, Google Pagerank Scientific Computing – solving very large problems

solving linear systems

$$2x_{1} + x_{2} = 4$$

$$x_{1} + 5x_{2} - x_{3} = 8 \Rightarrow$$

$$x_{1} - 2x_{2} + 4x_{3} = 9$$

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 5 & -1 \\ 1 & -2 & 4 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 9 \end{bmatrix}$$

$$A\mathbf{x} = \mathbf{b}$$

$$A\mathbf{x} = \mathbf{b}$$

$$A\mathbf{x} = \mathbf{b}$$

$$A\mathbf{x} = \mathbf{b}$$

always use the **backslash** operator to solve a linear system, instead of **inv(A)**

solving linear systems (using backslash)

$$2x_{1} + x_{2} = 4$$

$$x_{1} + 5x_{2} - x_{3} = 8 \Rightarrow \begin{bmatrix} 2 & 1 & 0 \\ 1 & 5 & -1 \\ 1 & -2 & 4 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 9 \end{bmatrix}$$

solving linear systems (using inv)

solving linear systems – back-slash and forward-slash

solving linear systems – least-squares solutions

A of size NxM x of size Mx1 column b of size Nx1 column

x = A\b
pseudo-inverse
x = pinv(A)*b;

x=A\b is a solution of Ax=b
in a least-squares sense,
i.e., x minimizes the norm squared
of the error e = b - A*x:
 (b-Ax) '* (b-Ax) = min

x may or may not be unique depending on whether the linear system **Ax=b** is over-determined, under-determined, or whether **A** has full rank or not

least-squares solutions - summary

- A = NxM matrix A' = MxN matrix
- x = Mx1 column A' * A = MxM m
- **b** = **Nx1** column

A'*A = MxM matrix A'*b = Mx1 column

Assuming full rank for **A**, we have the following cases:

- 1. N>M, overdetermined case, (most common in practice)
 - x = A b = unique least-squares solution, same as
 - x = pinv(A) *b, and $x = (A'*A)^{(-1)} * (A'*b)$ th

x = **A\b** is numerically the most accurate method

- 2. N<M, underdetermined case, (there are many solutions)</p>
 x=A\b, x=pinv(A) *b, are two possible solutions
- 3. N=M, square invertible case, x is unique
 x = A\b is equivalent to x = A^(-1) *b

$$J = e^T e = (b - Ax)^T (b - Ax) = x^T (A^T A)x - 2x^T (A^T b) + b^T b = \min_{x \in A} (A$$

$$\frac{\partial J}{\partial x} = 2A^T (Ax - b) = 0 \quad \Rightarrow \quad x_{\text{opt}} = (A^T A)^{-1} A^T b$$

inverse exists because A was
assumed to have full rank

$$J_{\min} = J|_{x=x_{opt}} = \begin{bmatrix} b^T b - b^T A (A^T A)^{-1} A^T b \\ \text{minimized value of } J \\ \text{achieved at } x = x_opt \end{bmatrix}$$

$$A = [1 2; 3 4; 5 6] \\b = [4, 3, 8]';$$

$$x_opt = (A'*A) \setminus (A'*b)
J_min = b'*b - ... b'*A*inv(A'*A)*A'*b
x_opt = -1
J_min = 6
$$A^T A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 35 & 44 \\ 44 & 56 \end{bmatrix}
A^T b = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 8 \end{bmatrix} = \begin{bmatrix} 53 \\ 68 \end{bmatrix}
b^T b = [4, 3, 8] \begin{bmatrix} 4 \\ 3 \\ 8 \end{bmatrix} = 89$$$$

$$x_{\text{opt}} = (A^T A)^{-1} A^T b = \begin{bmatrix} -1\\2 \end{bmatrix}, \quad J_{\min} = b^T b - b^T A^T (A^T A)^{-1} A b = 6$$

$$e = b - Ax = \begin{bmatrix} 4 \\ 3 \\ 8 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 - x_1 - 2x_2 \\ 3 - 3x_1 - 4x_2 \\ 8 - 5x_1 - 6x_2 \end{bmatrix} = \text{error}$$

$$J = (4 - x_1 - 2x_2)^2 + (3 - 3x_1 - 4x_2)^2 + (8 - 5x_1 - 6x_2)^2$$

$$x=[x_1,x_2]egin{bmatrix} 35 & 44\ 44 & 56 \end{bmatrix}egin{bmatrix} x_1\ x_2\end{bmatrix}-2\cdot [53,\,68]egin{bmatrix} x_1\ x_2\end{bmatrix}+89$$

 $= 35x_1^2 + 88x_1x_2 + 56x_2^2 - 106x_1 - 136x_2 + 89$

$$= 35(x_1+1)^2 + 88(x_1+1)(x_2-2) + 56(x_2-2)^2 + 6$$

$$= [x_1+1,\,x_2-2] egin{bmatrix} 35 & 44 \ 44 & 56 \end{bmatrix} egin{bmatrix} x_1+1 \ x_2-2 \end{bmatrix} + 6\,, \quad x-x_{
m opt} = egin{bmatrix} x_1+1 \ x_2-2 \end{bmatrix}$$

$$J = 35(x_1 + 1)^2 + 88(x_1 + 1)(x_2 - 2) + 56(x_2 - 2)^2 + 6 \ge 6$$

J is minimized at $x_1 = -1$, $x_2 = 2$, with minimum value, J = 6

```
% we can also minimize J with fminsearch,
% i.e., the multivariable version of fminbnd
J = Q(x) 35*(x(1)+1).^{2} + ...
         88*(x(1)+1).*(x(2)-2)+...
         56*(x(2)-2).^{2} + 6;
x0 = [0,0]'; % arbitrary initial search point
[xmin, Jmin] = fminsearch(J, x0)
                % Jmin = 6
% xmin =
8 -1.0000
   2.0000
8
```

Invertibility, rank, determinants, condition number

The inverse **inv**(**A**) of an **NxN** square matrix **A** exists if its **determinant** is non-zero, or, equivalently if it has **full rank**, i.e., when its **rank** is equal to the row or column dimension **N** >> doc inv
>> doc det
>> doc rank
>> doc cond

>> det(A)

Ο

>> rank(A)

2

ans

ans

a A	=	[1 2 [a,	3]'; b a+b, b]) = [4	5 6]';
Α	=				
		1	5	4	
		2	7	5	
		3	9	6	
		3	9	6	

det(A) = 0

Invertibility, rank, determinants, condition number

The larger the **cond (A)** the more ill-conditioned the linear system, and the less reliable the solution.

The *condition number* of a matrix measures the sensitivity of the solution of a system of linear equations to errors in the data

A =	[1,	5,	4	>> cond(A)
	2,	7 + 1e-8,	5	ans =
	З,	9,	6];	3.3227e+009

A\[1; 2; 3]	A\[1.001; 2.0002; 3.000003]
ans =	ans =
1	30150.999185
0 -30150.000183	
0	30150.000683

det(A) = -6.0000e-008

Determinant and inverse of a 2x2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
$$\det(A) = ad - bc$$

Example:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{-1} = \frac{1}{4-6} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix}$$

Matrix Exponential

Used widely in solving linear dynamic systems

$$\exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!} = 1 + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$$

$$\Rightarrow A = \begin{bmatrix} 1 & 2; 3 & 4 \end{bmatrix}; \qquad A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\Rightarrow \exp(A) \quad \text{% matrix exponential}$$

$$ans = \\51.9690 \quad 74.7366 \\112.1048 \quad 164.0738$$

$$\Rightarrow \exp(A) \quad \text{% element-wise exponential}$$

$$ans = \\2.7183 \quad 7.3891 \qquad \Rightarrow \text{ doc expm}}$$

$$20.0855 \quad 54.5982 \qquad \Rightarrow \text{ doc expm}}$$

Vector & Matrix Norms

>> doc norm

$$L_{1}, L_{2}, \text{ and } L_{\infty} \text{ norms of a vector}$$

$$\mathbf{x} = [x_{1}, x_{2}, \dots, x_{N}]$$

$$\|\mathbf{x}\|_{1} = \sum_{n=1}^{N} |x_{n}| \quad \longleftarrow \quad L_{1} \text{ norm}$$

$$\|\mathbf{x}\|_{2} = \sqrt{\sum_{n=1}^{N} |x_{n}|^{2}} \quad \longleftarrow \quad \text{Euclidean, } L_{2} \text{ norm}$$

$$\|\mathbf{x}\|_{\infty} = \max(|x_{1}|, |x_{2}|, \dots, |x_{N}|) \leftarrow L_{\infty} \text{ norm}$$

```
x = [1, -4, 5, 3]; p = inf;
                                    equivalent calculation using
                                    the built-in function norm:
switch p
   case 1
       N = sum(abs(x));
                                         % N = norm(x, 1);
   case 2
       N = sqrt(sum(abs(x).^2)); \qquad % N = norm(x,2);
   case inf
       N = max(abs(x));
                                         % N = norm(x, inf);
   otherwise
       N = sqrt(sum(abs(x).^2)); \qquad % N = norm(x,2);
end
```

useful for comparing two vectors or matrices

>> norm(a-b)

>> norm(A-B)

% a,b vectors of same size % A,B matrices of same size

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad \mathbf{b} \qquad \mathbf{a}$$

$$\|\mathbf{a} - \mathbf{b}\|_2 = \operatorname{norm}(\mathbf{a} - \mathbf{b})$$

$$= \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2}$$

$$= \sqrt{(\mathbf{a} - \mathbf{b})'(\mathbf{a} - \mathbf{b})}$$

Euclidean distance

$$R_{1}(I_{1} - I_{3}) + R_{2}(I_{1} - I_{2}) + V_{1} = 0$$
$$R_{2}(I_{2} - I_{1}) + R_{3}(I_{2} - I_{3}) - V_{2} = 0$$
$$R_{4}I_{3} + R_{3}(I_{3} - I_{2}) + R_{1}(I_{3} - I_{1}) + V_{3} = 0$$

Kirchhoff's Voltage Law

$$(R_1 + R_2)I_1 - R_2I_2 - R_1I_3 = -V_1$$
$$-R_2I_1 + (R_2 + R_3)I_2 - R_3I_3 = V_2$$
$$-R_1I_1 - R_3I_2 + (R_1 + R_3 + R_4)I_3 = -V_3$$

$$\begin{bmatrix} R_1 + R_2 & -R_2 & -R_1 \\ -R_2 & R_2 + R_3 & -R_3 \\ -R_1 & -R_3 & R_1 + R_3 + R_4 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} -V_1 \\ V_2 \\ -V_3 \end{bmatrix}$$

 $R_1 = 10$, $R_2 = 15$, $R_3 = 15$, $R_4 = 5$ $V_1 = 7.5$, $V_2 = 15$, $V_3 = 10$

$$\begin{bmatrix} R_1 + R_2 & -R_2 & -R_1 \\ -R_2 & R_2 + R_3 & -R_3 \\ -R_1 & -R_3 & R_1 + R_3 + R_4 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} -V_1 \\ V_2 \\ -V_3 \end{bmatrix}$$

$$\begin{bmatrix} 25 & -15 & -10 \\ -15 & 30 & -15 \\ -10 & -15 & 30 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} -7.5 \\ 15 \\ -5 \end{bmatrix}$$
$$A \mathbf{x} = \mathbf{b}$$

A = [25, -15, -10; -15, 30, -15; -10, -15, 30]b = [-7.5; 15; -5]

A =

25	-15	-10
-15	30	-15
-10	-15	30

-7.5000 15.0000 -5.0000

 $\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$

- 0.5000
- 0.5000

$$\mathbf{x} = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 1.0 \\ 0.5 \end{bmatrix}$$

inv(A)

ans = 0.2571 0.2286 0.2000 0.2286 0.2476 0.2000 0.2000 0.2000 0.2000 $inv(sym(A)) \longrightarrow (1/105) \times [27]$ 24 21 24 26 21 21 21 21]

$$\mathbf{x} = A^{-1}\mathbf{b} = \frac{1}{105} \begin{bmatrix} 27 & 24 & 21 \\ 24 & 26 & 21 \\ 21 & 21 & 21 \end{bmatrix} \begin{bmatrix} -7.5 \\ 15 \\ -5 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 1.0 \\ 0.5 \end{bmatrix}$$

Iterative solutions of linear systems Ax=b

the only practical way to solve very large linear systems is iteratively

Methods:

- 1. Jacobi method
- 2. Gauss-Seidel method
- 3. Relaxation methods
- 4. Conjugate Gradient method
- 5. Others

G. H. Golub and C. F. Van Loan, *Matrix Computations*, 3/e, JHU Press, 1996.
D. S. Watkins, *Fundamentals of Matrix Computations*, 2/e, Wiley, 2002.
L. N. Trefethen and D. Bau, *Numerical Linear Algebra*, SIAM, 1997.
A. Bjork, *Numerical Methods for Least Squares Problems*, SIAM, 1996.

rearrange

$$3x = 12$$

 $2x + x = 12$
 $2x + x = 12$
 $3cobi method$
 $2x = -x + 12$
 $x = -0.5x + 6$
for $k = 1, 2, 3, ...$
 $x(k + 1) = -0.5x(k) + 6$

start with any x(1), x(2) = -0.5x(1) + 6 x(3) = -0.5x(2) + 6x(4) = -0.5x(3) + 6, etc.

>> [k;	x] '
1	0.0000
2	6.0000
3	3.0000
4	4.5000
5	3.7500
6	4.1250
7	3.9375
8	4.0313
9	3.9844
10	4.0078
11	3.9961
12	4.0020
13	3.9990
14	4.0005
15	3.9998
16	4.0001
17	3.9999
18	4.0000
19	4.0000
20	4.0000

```
tol=1e-10; x0=0;
x=x0; k=1;
while 1
   xnew = -0.5 * x + 6;
   if abs(xnew-x)<=tol</pre>
       break;
   end
   x = xnew;
   k = k+1;
end
k, abs(x-4)
                forever
k =
                while loop
    37
ans =
  5.8208e-011
```

```
tol=1e-10; x0=0;
x=x0; k=1;
xnew = -0.5 * x + 6;
while abs(xnew-x)>tol
   x = xnew;
   k = k+1;
   xnew = -0.5 * x + 6;
end
k, abs(x-4)
                conventional
k =
                while loop
    37
ans =
  5.8208e-011
```