Introduction to Applied Scientific Computing using MATLAB

Mohsen Jenadeleh

Matrix Algebra

- dot product
- matrix-vector multiplication
- matrix-matrix multiplication
- matrix inverse
- solving linear systems
- least-squares solutions
- determinant, rank, condition number
- vector \& matrix norms
- iterative solutions of linear systems
- examples
- electric circuits
- temperature distributions

Operators and Expressions

operation	element-wise	matrix-wise
addition	+	+
subtraction	-	-
multiplication	.$*$	$*$
division	.$/$	$/$
left division	.\backslash	\vdots
exponentiation	.\wedge	\wedge
transpose w/o complex conjugation	.$'$	
transpose with complex conjugation	$'$	

$$
\begin{aligned}
& \gg A=\left[\begin{array}{lll}
1 & 2 ; & 4
\end{array}\right] \\
& \mathrm{A}= \\
& \begin{array}{ll}
1 & 2 \\
3 & 4
\end{array} \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right]} \\
& \text { >> [A, A.^2; A^2, A*A] } \\
& \text { \% form sub-blocks } \\
& \text { ans }= \\
& \text { \% note } \mathrm{A}^{\wedge} 2=A{ }^{2} \mathrm{~A} \\
& \gg B=10 .{ }^{\wedge} A \text {; } \\
& \text { >> }[B, \log 10(B)] \\
& B=\left[\begin{array}{ll}
10^{1} & 10^{2} \\
10^{3} & 10^{4}
\end{array}\right] \\
& \begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}
\end{aligned}
$$

dot product

The dot product is the basic operation in matrix-vector and matrix-matrix multiplications

$$
\begin{gathered}
\mathbf{a}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \quad \begin{array}{l}
\mathbf{a}, \mathbf{b} \text { must have the same } \\
\text { dimension }
\end{array} \\
\mathbf{a}^{T} \mathbf{b}=\left[\begin{array}{lll}
a_{1}, a_{2}, a_{3}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
\mathbf{a}^{T} \mathbf{b}=\mathbf{a}^{\prime} \mathbf{b}=\mathbf{a} \cdot \mathbf{b}=\mathbf{a} .^{\prime} * \mathbf{b} \\
\uparrow \uparrow \\
\begin{array}{l}
\text { math } \\
\text { notations }
\end{array} \\
\begin{array}{l}
\text { MATLAB } \\
\text { notation }
\end{array}
\end{gathered}
$$

dot product for complex-valued vectors

complex-conjugate transpose, or, hermitian conjugate of a

$$
\begin{gathered}
\mathbf{a}^{\dagger} \mathbf{b}=\left[a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right] \\
\mathbf{a}^{\dagger} \mathbf{b}=\mathbf{a}^{H} \mathbf{b}=\mathbf{a}^{\prime} * \mathbf{b} \\
\uparrow \\
\begin{array}{l}
\text { math } \\
\text { notations }
\end{array} \\
\begin{array}{l}
\text { MATLAB } \\
\text { notation }
\end{array}
\end{gathered}
$$

for real-valued vectors, the operations ' and .' are equivalent

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
4 \\
-5 \\
2
\end{array}\right] \\
& {[1,2,-3]\left[\begin{array}{r}
4 \\
-5 \\
2
\end{array}\right]=1 \times 4+2 \times(-5)+(-3) \times 2=-12}
\end{aligned}
$$

$$
\gg \mathrm{a}=[1 ; 2 ;-3] ; \mathrm{b}=[4 ;-5 ; 2] ;
$$

$$
\gg a^{\prime} * b
$$

$$
\text { ans }=
$$

$$
-12
$$

$\gg \operatorname{dot}(\mathrm{a}, \mathrm{b})$ ans = -12
\% builtin function
\% same as sum (a.*b)

matrix-vector multiplication

$$
\begin{aligned}
& {[4,1,2]\left[\begin{array}{r}
5 \\
-4 \\
-7
\end{array}\right]=2 \quad \begin{array}{l}
\begin{array}{l}
\text { combine three dot product } \\
\text { operations into a single } \\
\text { matrix-vector multiplication }
\end{array} \\
\hline
\end{array}} \\
& {[1,-1,1]\left[\begin{array}{r}
5 \\
-4 \\
-7
\end{array}\right]=2 \Rightarrow\left[\begin{array}{rrr}
4 & 1 & 2 \\
1 & -1 & 1 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{r}
5 \\
-4 \\
-7
\end{array}\right]=\left[\begin{array}{r}
2 \\
2 \\
-1
\end{array}\right]} \\
& {[2,1,1]\left[\begin{array}{r}
5 \\
-4 \\
-7
\end{array}\right]=-1}
\end{aligned}
$$

matrix-vector multiplication

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
\text { operations into a single } \\
\text { matrix-vector multiplication }
\end{array}\right]=\left[\begin{array}{l}
b_{2} \\
b_{3}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
4 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
5
\end{array}\right]\left[\begin{array}{c}
2
\end{array}\right] \quad \text { matrix-matrix multiplication }} \\
& {\left[\begin{array}{rrr}
4 & 1 & 2 \\
1 & -1 & 1 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{r}
-1 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{r}
3 \\
-2 \\
3
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
4 & 1 & 2 \\
1 & -1 & 1 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{r}
-3 \\
1 \\
6
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
4 & 1 & 2 \\
1 & -1 & 1 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
5 & -1 & -3 \\
-4 & 3 & 1 \\
-7 & 2 & 6
\end{array}\right]=\left[\begin{array}{rrr}
2 & 3 & 1 \\
2 & -2 & 2 \\
-1 & 3 & 1
\end{array}\right]}
\end{aligned}
$$

$\gg A=\left[\begin{array}{lllllll}4 & 1 & 2 ; & 1 & 1 & 1 ; & 1\end{array}\right]$
A =

4	1	2
1	-1	1
2	1	1

$\gg B=\left[\begin{array}{llllllll}5 & -1 & -3 ; & -4 & 3 & 1 ; & -7 & 2\end{array}\right]$
$B=$

5	-1	-3
-4	3	1
-7	2	6

$\Rightarrow C=A * B$
$\mathrm{C}=$

2	3	1
2	-2	2
-1	3	1

$$
\begin{aligned}
& C_{i j}=\sum_{k=1}^{K} A_{i k} B_{k j}, \quad 1 \leq i \leq N, \quad 1 \leq j \leq L
\end{aligned}
$$

$C(i, j)$ is the dot product of i-th row of A with j-th column of B

$$
\left[\begin{array}{rrr}
4 & 1 & 2 \\
1 & -1 & 1 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
5 & 1 & -3 \\
-4 & 3 & 1 \\
-7 & 2 & 6
\end{array}\right]=\left[\begin{array}{rrr}
2 & 3 & 1 \\
2 & -2 & 2 \\
-1 & 3 & 1
\end{array}\right]
$$

note:
 $\mathrm{A} * \mathrm{~B} \neq \mathrm{B} * \mathrm{~A}$

$2 \times(-1)+1 \times 3+1 \times 2=3$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]} \\
& \quad=\left[\begin{array}{ll|l}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
\hline a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right]
\end{aligned}
$$

Rule of thumb:
(NxK) $\mathrm{x}(\mathrm{KxM}) \quad-->N \mathrm{NM}$
A is NxK
B is KxM
then, $A * B$ is NxM

vector-vector multiplication

$$
\left[a_{1}, a_{2}, a_{3}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\begin{aligned}
& a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
& \begin{array}{l}
(1 \times 3) \times(3 \times 1)-->1 \times 1=\text { scalar } \\
\text { row * column = scalar }
\end{array}
\end{aligned}
$$

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]\left[b_{1}, b_{2}, b_{3}\right]=\left[\begin{array}{lll}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\
a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\
a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}
\end{array}\right]
$$

$$
(3 \times 1) \times(1 \times 3)-->3 \times 3
$$

$$
\text { column } * \text { row }=\text { matrix }
$$

vector-vector multiplication

$\gg[1,$		$\left[\begin{array}{lll}2 & -3 & -1\end{array}\right]^{\prime}$	row x column = scalar
-7			
> [1,		$\left[\begin{array}{lll}2 & -3 & -1\end{array}\right]$	$\begin{aligned} & \text { column } \times \text { row } \\ & =\text { matrix } \end{aligned}$
2	-3	-1	
4	-6	-2	
6	-9	-3	

solving linear systems

$A x=b$

Linear equations have a very large number of applications in engineering, science, social sciences, and economics

Linear Programming - Management Science
Computer Aided Design - aerodynamics of cars, planes
Signal Processing, Communications, Control, Radar,
Sonar, Electromagnetics, Oil Exploration, Computer Vision, Pattern \& Face Recognition
Chip Design - millions of transistors on a chip
Economic Models, Finance, Statistical Models,
the only practical way to solve very large systems is iteratively Data Mining, Social Models, Financial Engineering Markov Models - Speech, Biology, Google Pagerank Scientific Computing - solving very large problems

solving linear systems

$$
A \mathbf{x}=\mathbf{b} \quad \Rightarrow \quad \mathbf{x}=A^{-1} \mathbf{b}=A \backslash \mathbf{b}
$$

always use the backslash operator to solve a linear system, instead of inv (A)

solving linear systems (using backslash)

$$
\begin{aligned}
& \begin{array}{r}
2 x_{1}+x_{2}=4 \\
x_{1}+5 x_{2}-x_{3}=8 \\
x_{1}-2 x_{2}+4 x_{3}=9
\end{array} \quad \Rightarrow \quad\left[\begin{array}{rrr}
2 & 1 & 0 \\
1 & 5 & -1 \\
1 & -2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
8 \\
9
\end{array}\right] \\
& \gg A=\left[\begin{array}{lllllllll}
2 & 1 & 0 ; & 1 & 5 & -1 ; & -2 & 4
\end{array}\right] ; \\
& \gg b=\left[\begin{array}{lll}
4 & 8 & 9
\end{array}\right] ; \\
& \text { >> } x=A \backslash b \\
& \text { x = } \\
& 1 \\
& \text { \% solution of } A * x=b \\
& \text { \% } \mathrm{x}=\mathrm{A}^{\wedge}-1 \text { * } \mathrm{b} \\
& \text { \% } x=\operatorname{inv}(A) * b \\
& \text { >> norm(A*x-b) } \\
& \text { ans = } \\
& 0 \\
& \text { \% test - should be zero } \\
& \text { \% or, of the order of es }
\end{aligned}
$$

solving linear systems (using inv)

$$
\begin{aligned}
& \text { >> } A=\left[\begin{array}{llllllll}
2 & 1 & 0 ; & 1 & -1 ; & -2 & 4
\end{array}\right] ; \\
& \gg b=\left[\begin{array}{lll}
4 & 8 & 9
\end{array}\right] ; \\
& \text { >> inv(A) } \\
& \text { \% same as } A^{\wedge}(-1) \\
& \text { ans = } \\
& 0.5806-0.1290-0.0323 \\
& -0.1613 \quad 0.2581 \quad 0.0645 \\
& -0.2258 \quad 0.1613 \quad 0.2903
\end{aligned}
$$

>> $x=\operatorname{inv}(A)$ * b
x =
1.0000
2.0000
3.0000
>> norm (A*x-b)
ans $=$
$1.8310 e-015$
\% but prefer backslash \% same as $\mathrm{x}=\mathrm{A}^{\wedge}-1$ * b

$$
\begin{aligned}
& \text { >> inv }(\operatorname{sym}(A)) \\
& \text { ans }= \\
& {\left[\begin{array}{llr}
18 / 31, & -4 / 31, & -1 / 31] \\
{[-5 / 31,} & 8 / 31, & 2 / 31] \\
{[-7 / 31,} & 5 / 31, & 9 / 31]
\end{array}\right.}
\end{aligned}
$$

solving linear systems - back-slash and forward-slash

A of size NxN and invertible
X of size NxK
B of size NxK

equivalent

$A X=B \quad-->\quad X=A \backslash B=\operatorname{inv}(A) * B$

A of size NxN and invertible
\mathbf{X} of size KxN
B of size KxN

$X A=B \quad-->\quad X=B / A=B * i n v(A)$

solving linear systems - least-squares solutions
A of size NxM
\mathbf{x} of size $\mathbf{M x 1}$ columnb of size Nx1 column
$\mathbf{x}=\mathrm{A} \backslash \mathrm{b}$
pseudo-inverse
x = pinv(A) *b;
$\mathbf{x}=\mathrm{A} \backslash \mathrm{b}$ is a solution of $\mathrm{Ax}=\mathrm{b}$
in a least-squares sense,
i.e., \mathbf{x} minimizes the norm squared
of the error $\mathbf{e}=\mathbf{b}-\mathbf{A} \mathbf{x}$:
($b-A x)^{\prime *}(b-A x)=\min$
\mathbf{x} may or may not be unique depending on whether the linear system $\mathbf{A x}=\mathrm{b}$ is over-determined, under-determined, or whether \mathbf{A} has full rank or not

least-squares solutions - summary

$\mathbf{A}=\mathbf{N x M}$ matrix	$\mathbf{A}^{\prime}=\mathbf{M x N}$ matrix
$\mathbf{x}=\mathbf{M x 1}$ column	$\mathbf{A}^{\prime} \star_{\mathbf{A}}=\mathbf{M x M}$ matrix
$\mathbf{b}=\mathbf{N x 1}$ column	$\mathbf{A}^{\prime} \star_{\mathbf{b}}=\mathbf{M x 1}$ column

Assuming full rank for \mathbf{A}, we have the following cases:

1. $\mathbf{N}>\mathbf{M}$, overdetermined case, (most common in practice) $\mathbf{x}=\mathrm{A} \backslash \mathrm{b}=$ unique least-squares solution, same as $\mathbf{x}=\operatorname{pinv}(\mathrm{A}) * \mathrm{~b}$, and $x=\left(A^{\prime} A^{\prime}\right)^{\wedge}(-1) \quad$ * ($\left.A^{\prime}{ }^{\prime} b\right)$
$\mathbf{x}=\mathrm{A} \backslash \mathrm{b}$ is numerically the most accurate method
2. $\mathrm{N}<\mathrm{M}$, underdetermined case, (there are many solutions) $\mathbf{x}=\mathrm{A} \backslash \mathrm{b}, \quad \mathrm{x}=\mathrm{pinv}(\mathrm{A}) * \mathrm{~b}$, are two possible solutions
3. $\mathrm{N}=\mathrm{M}$, square invertible case, \mathbf{x} is unique
$\mathbf{x}=\mathrm{A} \backslash \mathrm{b}$ is equivalent to $\mathbf{x}=\mathrm{A}^{\wedge}(-1) * \mathrm{~b}$

least-squares solutions - example

$$
\begin{aligned}
& \text { \% overdetermined } \\
& \text { \% full-rank example } \\
& A=[12 ; 34 ; 56] \\
& \text { b }=[4,3,8] \text { '; } \\
& \mathbf{x}=\mathrm{A} \backslash \mathrm{~b} \\
& \text { \% } x=p i n v(A) * b \\
& \% x=\left(A^{\prime} * A\right) \backslash\left(A^{\prime} * b\right) \\
& \mathrm{x}= \\
& \begin{array}{r}
-1 \\
2
\end{array} \\
& e=b-A x=\left[\begin{array}{l}
4 \\
3 \\
8
\end{array}\right]-\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
4-x_{1}-2 x_{2} \\
3-3 x_{1}-4 x_{2} \\
8-5 x_{1}-6 x_{2}
\end{array}\right]=\text { error }
\end{aligned}
$$

least-squares solutions - example

$$
J=e^{T} e=(b-A x)^{T}(b-A x)=x^{T}\left(A^{T} A\right) x-2 x^{T}\left(A^{T} b\right)+b^{T} b=\min
$$

$$
\frac{\partial J}{\partial x}=2 A^{T}(A x-b)=0 \Rightarrow x_{\mathrm{opt}}=\left(A^{T} A\right)^{-1} A^{T} b
$$

$$
J_{\min }=\left.J\right|_{x=x_{\mathrm{opt}}}=\begin{array}{|l|}
\hline b^{T} b-b^{T} A\left(A^{T} A\right)^{-1} A^{T} b \\
\begin{array}{l}
\text { minimized value of } \boldsymbol{J} \\
\text { achieved at } \boldsymbol{x}=\boldsymbol{x}_{-} \text {opt }
\end{array} \\
\hline
\end{array}
$$

least-squares solutions - example

$$
\begin{aligned}
& A=[12 ; 34 ; 56] \\
& \text { b }=[4,3,8] \text {; } \\
& x_{\text {_opt }}=\left(A^{\prime} * A\right) \backslash\left(A^{\prime} * b\right) \\
& J \text { _min }=b^{\prime *} \mathrm{~b}-\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { x_opt }= \\
& \begin{array}{r}
-1 \\
2
\end{array} \\
& \text { J_min }= \\
& 6 \\
& A^{T} A=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]=\left[\begin{array}{ll}
35 & 44 \\
44 & 56
\end{array}\right] \\
& A^{T} b=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]\left[\begin{array}{l}
4 \\
3 \\
8
\end{array}\right]=\left[\begin{array}{l}
53 \\
68
\end{array}\right] \\
& b^{T} b=[4,3,8]\left[\begin{array}{l}
4 \\
3 \\
8
\end{array}\right]=89 \\
& x_{\mathrm{opt}}=\left(A^{T} A\right)^{-1} A^{T} b=\left[\begin{array}{r}
-1 \\
2
\end{array}\right], \quad J_{\min }=b^{T} b-b^{T} A^{T}\left(A^{T} A\right)^{-1} A b=6
\end{aligned}
$$

least-squares solutions - example

$$
\begin{aligned}
e= & b-A x=\left[\begin{array}{l}
4 \\
3 \\
8
\end{array}\right]-\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
4-x_{1}-2 x_{2} \\
3-3 x_{1}-4 x_{2} \\
8-5 x_{1}-6 x_{2}
\end{array}\right]=\text { error } \\
J & =\left(4-x_{1}-2 x_{2}\right)^{2}+\left(3-3 x_{1}-4 x_{2}\right)^{2}+\left(8-5 x_{1}-6 x_{2}\right)^{2} \\
& =\left[x_{1}, x_{2}\right]\left[\begin{array}{ll}
35 & 44 \\
44 & 56
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-2 \cdot[53,68]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+89 \\
& =35 x_{1}^{2}+88 x_{1} x_{2}+56 x_{2}^{2}-106 x_{1}-136 x_{2}+89 \\
& =35\left(x_{1}+1\right)^{2}+88\left(x_{1}+1\right)\left(x_{2}-2\right)+56\left(x_{2}-2\right)^{2}+6 \\
& =\left[x_{1}+1, x_{2}-2\right]\left[\begin{array}{ll}
35 & 44 \\
44 & 56
\end{array}\right]\left[\begin{array}{l}
x_{1}+1 \\
x_{2}-2
\end{array}\right]+6, \quad x-x_{\mathrm{opt}}=\left[\begin{array}{l}
x_{1}+1 \\
x_{2}-2
\end{array}\right]
\end{aligned}
$$

least-squares solutions - example

$J=35\left(x_{1}+1\right)^{2}+88\left(x_{1}+1\right)\left(x_{2}-2\right)+56\left(x_{2}-2\right)^{2}+6 \geq 6$
J is minimized at $x_{1}=-1, x_{2}=2$, with minimum value, $J=6$
\% we can also minimize J with fminsearch, \% i.e., the multivariable version of fminbnd
$J=@(x) 35 *(x(1)+1) . \wedge 2+\ldots$ 88* $(x(1)+1) . *(x(2)-2)+\ldots$ 56* (x(2)-2).^2 + 6;
$\mathbf{x 0}=[0,0]$; $\%$ arbitrary initial search point [xmin,Jmin] $=$ fminsearch ($J, x 0$)
$\begin{array}{lrl}\% & \text { xmin }= & \% \text { Jmin }=6 \\ \% & -1.0000 & \\ \% & 2.0000 & \end{array}$

Invertibility, rank, determinants, condition number

The inverse inv (A) of an $\mathbf{N x N}$ square matrix \mathbf{A} exists if its determinant is non-zero, or, equivalently if it has full rank, i.e., when its rank is equal to the row or
>> doc inv
>> doc det
>> doc rank
>> doc cond column dimension \mathbf{N}

$$
\begin{aligned}
& \text { a = [1 2 3]'; b = [4 5 6]'; } \\
& \mathrm{A}=[\mathrm{a}, \mathrm{a}+\mathrm{b}, \mathrm{~b}] \\
& \text { A }=
\end{aligned}
$$

$\operatorname{det}(\mathrm{A})=0$

$$
\begin{aligned}
& \text { >> } \operatorname{det}(\mathrm{A}) \\
& \text { ans }= \\
& 0 \\
& \text { >> rank (A) } \\
& \text { ans }= \\
& 2
\end{aligned}
$$

Invertibility, rank, determinants, condition number

The larger the cond (A) the more ill-conditioned the linear system, and the less reliable the solution.
The condition number of a matrix measures the sensitivity of the solution of a system of linear equations to errors in the data

| $A=\left[\begin{array}{ll}1, & 5, \\ 2, & 7+1 e-8, \\ 3, & 9,\end{array}\right.$ | 4
 3 |
| :---: | :--- | :--- |\quad| $\gg \operatorname{cond}(A)$ |
| :--- |
| ans $=$ |
| $3.3227 e+009$ |

$\mathrm{A} \backslash[1 ; 2 ; 3]$
ans $=$
1
0
0

$$
\begin{aligned}
& \mathrm{A} \backslash[1.001 ; 2.0002 ; 3.000003] \\
& \text { ans }= \\
& \begin{array}{r}
30150.999185 \\
-30150.000183 \\
30150.000683
\end{array}
\end{aligned}
$$

$\operatorname{det}(A)=-6.0000 e-008$

Determinant and inverse of a 2×2 matrix

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
& A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] \\
& \operatorname{det}(A)=a d-b c
\end{aligned}
$$

Example: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{-1}=\frac{1}{4-6}\left[\begin{array}{rr}4 & -2 \\ -3 & 1\end{array}\right]=\left[\begin{array}{rr}-2 & 1 \\ 1.5 & -0.5\end{array}\right]$

Matrix Exponential

Used widely in solving linear dynamic systems

$$
\exp (A)=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}=1+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots
$$

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

>> expm(A) \% matrix exponential ans =

$$
\begin{array}{rr}
51.9690 & 74.7366 \\
112.1048 & 164.0738
\end{array}
$$

>> $\exp (A)$ ans =

2.7183	7.3891
20.0855	54.5982

Vector \& Matrix Norms

>> doc norm

L_{1}, L_{2}, and L_{∞} norms of a vector
$\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{N}\right]$
$\|\mathbf{x}\|_{1}=\sum_{n=1}^{N}\left|x_{n}\right|$
$d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$
used as distance measure between

$$
L_{1} \text { norm }
$$ two vectors or matrices

$$
\|\mathbf{x}\|_{2}=\sqrt{\sum_{n=1}^{N}\left|x_{n}\right|^{2}}
$$

$$
\|\mathbf{x}\|_{\infty}=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{N}\right|\right) \quad L_{\infty} \text { norm }
$$

$\mathrm{x}=[1,-4,5,3] ; \mathrm{p}=$ inf;
switch p
case 1

$$
\mathrm{N}=\operatorname{sum}(\operatorname{abs}(\mathrm{x})) ;
$$

case 2

$$
\mathbf{N}=\operatorname{sqrt}\left(\operatorname{sum}\left(\operatorname{abs}(x) .^{\wedge} 2\right)\right) ; \quad \% N=\operatorname{norm}(x, 2) ;
$$

case inf

$$
N=\max (a b s(x)) ;
$$

\% $\mathrm{N}=$ norm(x,inf);
otherwise

$$
\mathbf{N}=\operatorname{sqrt}\left(\operatorname{sum}\left(\operatorname{abs}(x) .^{\wedge} 2\right)\right) ; \quad \% N=\operatorname{norm}(x, 2) ;
$$

end
useful for comparing two vectors or matrices
>> norm (a-b)
\% a,b vectors of same size
>> norm (A-B)
\% A,B matrices of same size

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& \|\mathbf{a}-\mathbf{b}\|_{2}=\operatorname{norm}(\mathbf{a}-\mathbf{b}) \\
& =\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\left(a_{3}-b_{3}\right)^{2}} \\
& =\sqrt{(\mathbf{a}-\mathbf{b})^{\prime}(\mathbf{a}-\mathbf{b})} \\
& \quad \text { dot product }
\end{aligned}
$$

Electric Circuits

$$
R_{1}\left(I_{1}-I_{3}\right)+R_{2}\left(I_{1}-I_{2}\right)+V_{1}=0
$$

Kirchhoff's
Voltage Law

$$
\begin{aligned}
& R_{2}\left(I_{2}-I_{1}\right)+R_{3}\left(I_{2}-I_{3}\right)-V_{2}=0 \\
& R_{4} I_{3}+R_{3}\left(I_{3}-I_{2}\right)+R_{1}\left(I_{3}-I_{1}\right)+V_{3}=0
\end{aligned}
$$

Electric Circuits

$$
\begin{aligned}
\left(R_{1}+R_{2}\right) I_{1}-R_{2} I_{2}-R_{1} I_{3} & =-V_{1} \\
-R_{2} I_{1}+\left(R_{2}+R_{3}\right) I_{2}-R_{3} I_{3} & =V_{2} \\
-R_{1} I_{1}-R_{3} I_{2}+\left(R_{1}+R_{3}+R_{4}\right) I_{3} & =-V_{3} \\
{\left[\begin{array}{ccc}
R_{1}+R_{2} & -R_{2} & -R_{1} \\
-R_{2} & R_{2}+R_{3} & -R_{3} \\
-R_{1} & -R_{3} & R_{1}+R_{3}+R_{4}
\end{array}\right]\left[\begin{array}{r}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right] } & =\left[\begin{array}{r}
-V_{1} \\
V_{2} \\
-V_{3}
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
R_{1}=10, \quad R_{2}=15, \quad R_{3}=15, \quad R_{4}=5 \\
V_{1}=7.5, \\
V_{2}=15, \quad V_{3}=10 \\
{\left[\begin{array}{ccc}
R_{1}+R_{2} & -R_{2} & -R_{1} \\
-R_{2} & R_{2}+R_{3} & -R_{3} \\
-R_{1} & -R_{3} & R_{1}+R_{3}+R_{4}
\end{array}\right]\left[\begin{array}{r}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{r}
-V_{1} \\
V_{2} \\
-V_{3}
\end{array}\right]} \\
{\left[\begin{array}{rrr}
25 & -15 & -10 \\
-15 & 30 & -15 \\
-10 & -15 & 30
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{r}
-7.5 \\
15 \\
-5
\end{array}\right]} \\
\dagger
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{A}= {[25,-15,} \\
& \mathrm{b}= {[-10 ;-15,30,-15 ;-10,-15,30] } \\
& \mathrm{A}= \\
&25 r-15 ;-5] \\
&-15 r r \\
&-10 \\
& \mathrm{~b}=-150 \\
& \mathrm{~b}=-7.5000 \\
& 15.0000 \\
&-5.0000 \\
& \mathbf{x}= \mathrm{A} \backslash \mathrm{~b} \\
& \mathbf{x}= \mathbf{x}=\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{l}
0.5 \\
1.0 \\
0.5
\end{array}\right] \\
& 0.5000 \\
& 1.0000 \\
& 0.5000
\end{aligned}
$$

inv(A)
ans $=$

0.2571	0.2286	0.2000
0.2286	0.2476	0.2000
0.2000	0.2000	0.2000

inv(sym (A)) $-->(1 / 105)$ * [27 $\begin{array}{ccc}24 & 21 \\ & 24 & 26 \\ 21 & 21 & 21]\end{array}$

$$
\mathbf{x}=A^{-1} \mathbf{b}=\frac{1}{105}\left[\begin{array}{lll}
27 & 24 & 21 \\
24 & 26 & 21 \\
21 & 21 & 21
\end{array}\right]\left[\begin{array}{r}
-7.5 \\
15 \\
-5
\end{array}\right]=\left[\begin{array}{l}
0.5 \\
1.0 \\
0.5
\end{array}\right]
$$

Iterative solutions of linear systems $\mathbf{A x}=\mathbf{b}$

the only practical way to solve very large linear systems is iteratively

G. H. Golub and C. F. Van Loan, Matrix Computations, 3/e, JHU Press, 1996.
D. S. Watkins, Fundamentals of Matrix Computations, 2/e, Wiley, 2002.
L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, 1997.
A. Bjork, Numerical Methods for Least Squares Problems, SIAM, 1996.

$$
\begin{aligned}
\hline \text { rearrange } & {\left[\begin{array}{l}
3 x=12 \\
2 x+x=12
\end{array}\right.} \\
\hline \text { rearrange } & \begin{array}{l}
\text { scalar example } \\
\text { illustrating the } \\
\text { Jacobi method }
\end{array} \\
\longrightarrow x=-0.5 x+6 \cdots & \text { turn it into a recursion } \\
& \\
& \begin{array}{l}
\text { for } k=1,2,3, \ldots \\
x(k+1)=-0.5 x(k)+6
\end{array}
\end{aligned}
$$

start with any $x(1)$,

$$
x(2)=-0.5 x(1)+6
$$

$$
x(3)=-0.5 x(2)+6
$$

$$
x(4)=-0.5 x(3)+6, \quad \text { etc. }
$$

>>	$[\mathrm{k} ; \mathrm{x}]$
1	l
1	0.0000
2	6.0000
3	3.0000
4	4.5000
5	3.7500
6	4.1250
7	3.9375
8	4.0313
9	3.9844
10	4.0078
11	3.9961
12	4.0020
13	3.9990
14	4.0005
15	3.9998
16	4.0001
17	3.9999
18	4.0000
19	4.0000
20	4.0000


```tol=1e-10; x0=0; x=x0; k=1; while 1 xnew = -0.5*x + 6; if abs(xnew-x)<=tol break; end x = xnew; k = k+1; end```	```tol=1e-10; x0=0; x=x0; k=1; xnew = -0.5*x+6; while abs(xnew-x)>tol x = xnew; k = k+1; xnew = -0.5*x + 6; end```
k, abs (x-4)	k, abs ( $\mathrm{x}-4$ )
$\mathbf{k}=\quad$forever   while loop	$\mathbf{k}=\quad$conventional   while loop
37	37
ans	ans $=$
$5.8208 \mathrm{e}-011$	$5.8208 \mathrm{e}-011$

