
Introduction to Applied Scientific Computing using
MATLAB

Mohsen Jenadeleh

In this lecture, slides from Mathworks, MIT, Waterloo and Rutgers Universities are used

“The purpose of computing is insight, not numbers”

Richard Hamming

“I hear and I forget,
I see and I remember,
I do and I understand.”

Confucious

Our Guiding Principles

• Easy and efficient programming in a high-level language, with
an interactive interface for rapid development.

• Vectorized computations for efficient programming, and
automatic memory allocation.

• Built-in support for state-of-the-art numerical computing
methods.

• Has variety of modern data structures and data types,
including complex numbers.

• High-quality graphics and visualization.

Main Features of MATLAB

• Symbolic math toolbox for algebraic and calculus operations,
and solutions of differential equations.

• Portable program files across platforms.

• Large number of add-on toolboxes for applications and
simulations.

• Huge database of user-contributed files & toolboxes, including
a large number of available tutorials & demos.

• Allows extensions based on other languages, such as C/C++,
supports Java and object-oriented programming.

• Parallel Computing (2)
• Math, Statistics, and Optimization (8)
• Control System Design and Analysis (6)
• Signal Processing and Communications (7)
• Image Processing and Computer Vision (4)
• Test and Measurement, Data Acquisition (5)
• Computational Finance, Datafeeds (7)
• Computational Biology (2)
• Code Generation and Application Deployment (11)
• Database Connectivity (2)

MATLAB Toolbox Application Areas

(54 toolboxes + 35 simulink products)

• Getting Started with MATLAB (HTML)
• Getting Started with MATLAB (PDF)
• MATLAB Examples
• MATLAB Online Tutorials and Videos
• MATLAB Interactive Tutorials
• MATLAB Toolbox Reference Manuals
• MATLAB Interactive CD
• Newsletters

• MATLAB User Community
• Other MATLAB Online Resources
• comp.soft-sys.matlab newsgroup

• Octave – a free look-alike version of MATLAB
• FreeMat – another free look-alike version

• NIST – Digital Library of Mathematical Functions
• NIST – Physical Constants

Web Resources

http://www.mathworks.com/help/techdoc/learn_matlab/bqr_2pl.html
http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf
http://www.mathworks.com/help/techdoc/demo_example.html
http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
http://www.mathworks.com/academia/student_center/tutorials/index.html?link=body
http://www.mathworks.com/help/index.html
http://www.mathworks.com/programs/matlab_cd/
http://www.mathworks.com/company/newsletters/
http://www.mathworks.com/matlabcentral/
http://www.duke.edu/%7Ehpgavin/matlab.html
http://groups.google.com/group/comp.soft-sys.matlab/topics
http://www.gnu.org/software/octave/
http://freemat.sourceforge.net/
http://dlmf.nist.gov/
http://physics.nist.gov/cuu/Constants/index.html
http://dlmf.nist.gov/
http://physics.nist.gov/cuu/Constants/index.html

1. MATLAB desktop
2. MATLAB editor
3. Getting help
4. Variables, built-in constants, keywords
5. Numbers and formats
6. Arrays and matrices
7. Operators and expressions
8. Functions – built-in and user-defined
9. Basic plotting
10. Function maxima and minima
11. Strings, cell arrays, fprintf

MATLAB Basics

These should be enough to get you started. We will explore
them further, as well as other topics, in the rest of the course.

1. MATLAB Desktop

You can select what is on your desktop by Clicking on
Layout. Go down to Command History and select docked.

Setting

2. MATLAB Desktop

MATLAB Editor for writing Script Files or Functions

workspace
window

Several ways of getting help:

1) help menu item on MATLAB desktop opens up searchable
help browser window

2) from the following commands:

>> helpdesk % open help browser
>> help topic % e.g., help log10
>> doc topic % e.g., doc plot
>> help % get list of all help topics
>> help dir % get help on entire directory
>> help syntax % get help on MATLAB syntax
>> help / % operators & special characters
>> docsearch text % search HTML browser for ‘text’
>> lookfor topic % e.g., lookfor acos

comments begin with %

3. Getting Help

4. Variables, Constants, Keywords

Variables require no special declarations of type or
storage. Examples:

>> x = 3; % simple scalar
>> y = [4, 5, 6]; % row vector of length 3
>> z = [4; 5; 6]; % column vector of length 3
>> A = [1,2,3; 4,5,6]; % 2x3 matrix
>> s = 'abcd efg'; % string
>> C = {'abc', 'defg', '123-456'}; % 1x3 cell array

math notation
the functions class and size
tell you the type and dimensions
of the defined object, e.g.,

>> class(C)
>> size(C)

>> x = 3
x =

3

>> y = [4, 5, 6]
y =

4 5 6

>> z = [4; 5; 6] % note, z = y'
z =

4
5
6

>> A = [1 2 3; 4 5 6]
A =

1 2 3
4 5 6

Several things happen with this simple
MATLAB command:

A variable, x, of type double is
created
A memory location for the
variable x is assigned
The value 3 is stored in that
memory location called x.

What are your variables? How to clear them?
Use workspace window, or the commands:

who, whos, clear, clc, close

>> who
Your variables are:
A y z

>> whos
Name Size Bytes Class Attributes
A 2x3 48 double
y 1x3 24 double
z 3x1 24 double

>> clear all % clear all variables from memory
>> clc % clear command window
>> close all % close all open figures

Operating system commands:

>> path % display search path
>> pathtool % modify search path
>> addpath dir % add directory to path

>> cd dir % change directory
>> pwd % print working directory

>> dir % list all files in current dir
>> what % list MATLAB files only
>> which file % display location of file
>> edit file % invoke MATLAB editor
>> help % command provides information

about a function
>> help sin %This only works if you know

the name of the function you
want help with.

>> quit % quit MATLAB
>> exit % quit MATLAB

Some MATLAB® Math Functions

Function MATLAB® Function MATLAB®
cosine cos or cosd square root sqrt
sine sin or sind exponential exp

tangent tan or tand logarithm (base 10) log10
cotangent cot or cotd natural log (base e) log

arc cosine acos or
acosd

round to nearest
integer round

arc sine asin or asind round down to integer floor
arc tangent atan or atand round up to integer ceil

arc cotangent acot or acotd

Note: cos(α) assumes α in radians; whereas, cosd(α) assumes α in
degrees.
acos(x) returns the angle in radians; whereas, acosd(x) returns
the angle in degrees.

π radians = 180 degrees

1. Variable names must begin with a letter
2. Names can include any combinations of

letters, numbers, and underscores
3. Maximum length for a variable name is 63

characters
4. MATLAB® is case sensitive. The variable name

A is different than the variable name a.
5. Avoid the following names: i, j, pi, and

all built-in MATLAB® function names such as
length, char, size, plot, break, cos, log, …

6. It is good programming practice to name your
variables to reflect their function in a
program rather than using generic x, y, z
variables.

Naming Rules for Variables

Special built-in math constants that should not
(though they can) be re-defined as variables:

eps % machine epsilon - floating-point accuracy
i,j % imaginary unit, i.e., sqrt(-1)
Inf,inf % infinity
intmax % largest value of specified integer type
intmin % smallest value of specified integer type
NaN,nan % not-a-number, e.g., 0/0, inf/inf
pi % pi
realmax % largest positive floating-point number
realmin % smallest positive floating-point number

Note: i,j are commonly used for array and matrix indices. If you’re
dealing with complex-valued data, avoid redefining both i,j.

Values of special constants:

>> eps % equal to 2^(-52)
ans =

2.2204e-016 % MATLAB’s floating-point accuracy
% i.e., 2.2204 * 10^(-16)

>> intmax % 2^(31)-1 for 32-bit integers
ans =

2147483647

>> intmin % equal to -2^(31)
ans =
-2147483648

>> realmax % equal to (2-eps)*2^(1023)
ans =

1.7977e+308 % i.e., 1.7977 * 10^(308)

>> realmin % 2^(-1022) = 2.2251 * 10^(-308)
ans =

2.2251e-308

Special keywords that cannot be used
as variable names:

>> iskeyword

ans =
'break'
'case'
'catch'
'classdef'
'continue'
'else'
'elseif'
'end'
'for'

'function'
'global'
'if'
'otherwise'
'parfor'
'persistent'
'return'
'switch'
'try'
'while'

'true' , 'false'

How Computers Store Variables

Computers store all data (numbers, letters, instructions, …) as strings
of 1s and 0s (bits).

A bit is short for binary digit. It has only two possible
values: On (1) or Off (0).
A byte is simply a string of 8 bits.

A kilobyte (kB) is 1000 bytes (commercial), kilobyte is traditionally
used to denote 1024 (210) bytes.

A megabyte (MB) is 1,000,000 bytes
A gigabyte (GB) is 1,000,000,000 bytes

For a sense of size, click on link below:
http://highscalability.com/blog/2012/9/11/how-big-is-a-petabyte-

exabyte-zettabyte-or-a-yottabyte.html

http://highscalability.com/blog/2012/9/11/how-big-is-a-petabyte-exabyte-zettabyte-or-a-yottabyte.html

5. Numbers and Formats

MATLAB by default uses double-precision (64-bit)
floating-point numbers following the IEEE floating-point
standard. You may find more information on this
standard in:

Representation of Floating-Point Numbers

C. Moler, "Floating Points," MATLAB News and Notes,
Fall, 1996 (PDF file)

x = (-1)^s * (1+f) * 2^(e-1023)

1 bit 52 bits 11 bits
sign mantissa exponent

1 <= e <= 2046, e=0, e=2047

0 <= f < 1
f_min = eps = 2^(-52)

machine epsilon

http://www.mathworks.com/support/tech-notes/1100/1108.html
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

MATLAB can also use single-precision (32-bit) floating
point numbers if so desired.

There are also several integer data types that are useful
in certain applications, such as image processing or
programming DSP chips. The integer data types have 8,
16, 32, or 64 bits and are signed or unsigned:

int8, int16, int32, int64
uint8, uint16, uint32, uint64

These data types work for integers as long as the
integers don’t exceed the range for the data type
chosen.

They take up less memory space than doubles.

They don’t work for non-integers. If you create a
variable that is an int8 and try to assign it a value of
14.8, that variable will be assigned a value of 15 instead
(closest integer within the range).

One common application for integer data types is image
data (jpeg, png, …)

For more information do:

>> help datatypes
>> help class % determine datatype
>> help int32 % example

Numeric Data Types

Name Description Range
double 64 bit floating point ±2.23×10−308 to ±1.80×10308

single 32 bit floating point ±1.18×10−38 to ±3.4×1038

uint8 8 bit unsigned integer Integers from 0 to 255

int8 8 bit signed integer Integers from −128 to 127

uint16 16 bit unsigned integer Integers from 0 to 65535

int16 16 bit signed integer Integers from −32768 to 32767

uint32 32 bit unsigned integer Integers from 0 to 4294967295

int32 32 bit signed integer Integers from −2147483648 to 2147483647

MATLAB has several different options for storing numbers as bits.
Unless you specify otherwise, all numbers in MATLAB are stored
as doubles.

Why should I care how data
is stored in a computer?

Example: Perform each of the following calculations in
your head.

a = 4/3
b = a – 1
c = 3*b
e = 1 – c
What does MATLAB get?

Why should I care how data
is stored in a computer?

What does MATLAB get?

a = 4/3 = 1.3333
b = a – 1 = 0.3333
c = 3*b = 1.0000
e = 1 – c = 2.2204e-016

It is not possible to perfectly represent all real
numbers using a finite string of 1s and 0s.

Comments
Not all numbers can be represented exactly even using 64 bit
doubles.
If we do many, many calculations with numbers which are just

a tiny bit off, that error can grow very, very large depending on
the type of computations being performed.

64 bit doubles have a huge, but still limited range.

What happens if we exceed it? Try the following:

>> a = 373^1500
>> b = factorial(172)

By default, MATLAB treats all numbers and expressions as
complex (even if they are real).

No special declarations are needed to handle complex-number
operations. Examples:

>> z = 3+4i; % or, 3+4j, 3+4*i, 3+4*j
>> x = real(z); % real part of z
>> y = imag(z); % inaginary part of z
>> R = abs(z); % absolute value of z
>> theta = angle(z); % phase angle of z in radians
>> w = conj(z); % complex conjugate, w=3-4i
>> isreal(z); % test if z is real or complex

Complex Numbers

cartesian & polar forms math notation: θ = Arg(z)

>> z = 3+4j
z =

3.0000 + 4.0000i

>> x = real(z)
x =

3
>> y = imag(z)
y =

4
>> R = abs(z)
R =

5
>> theta = angle(z) % in radians
theta =

0.9273

>> abs(z - R*exp(j*theta)) + abs(z-x-j*y) % test
ans =
6.2804e-016

equivalent definitions:

z = 3+4*j
z = 3+4i
z = 3+4*i
z = complex(3,4)

Display Formats
>> format % default - 4 decimal places
>> format short % same as the default
>> format long % 15 decimal places
>> format short e % 4 decimal – exponential format
>> format short g % 4 decimals – exponential or fixed
>> format long e % 15 decimals - exponential
>> format long g % exponential or fixed
>> format shorteng % 4 decimals, engineering
>> format longeng % 15 decimals, engineering
>> format hex % hexadecimal
>> format rat % rational approximation
>> format compact % conserve vertical spacing
>> format loose % default vertical spacing

>> vpa(x,digits) % variable-precision-arithmetic

These affect only the display format – internally all
computations are done with full (double) precision

Example - displayed value of 10*pi in different formats:

31.4159 % format, or format short
31.415926535897931 % format long
3.1416e+001 % format short e
31.416 % format short g
3.141592653589793e+001 % format long e
31.4159265358979 % format long g
31.4159e+000 % format shorteng
31.4159265358979e+000 % format longeng

>> vpa(10*pi) % symbolic toolbox
ans =
31.415926535897932384626433832795

>> vpa(10*pi,20) % specify number of digits
ans =
31.415926535897932385

>> help format
>> help vpa
>> help digits

ASCII Code

When you press a key on your computer keyboard,
the key that you press is translated to a binary
code.

A = 1000001 (Decimal = 65)
a = 1100001 (Decimal = 97)
0 = 0110000 (Decimal = 48)

ASCII Code

Strings in MATLAB
MATLAB stores strings as an array of characters using the
ASCII code.

Each letter in a string takes up two bytes (16 bits) and the two
bytes are the binary representation of the decimal number
listed in the ASCII table.

Try the following in MATLAB:

>> month = ‘August’
>> double(month)

>> x = 10; disp('the value of x is:'); disp(x);
the value of x is:

10

>> x = input('enter x: ') % numerical input
enter x: 100 % 100 entered by user
x =

100

>> y = input('enter string: ', 's'); % string input
enter string: abcd efg
>> y = input('enter string: ')
enter string: 'abcd efg'
y =
abcd efg

input/output functions: disp, input

prompt string in single quotes

string entered with no quotes
string entered in quotes

>> help disp
>> help input
>> help menu

>> help fprintf
>> help sprintf

6. Arrays and Matrices

a) row and column vectors
b) transposition operator, '
c) colon operator, :
d) equally-spaced elements, linspace
e) accessing array elements
f) dynamic allocation & de-allocation
g) pre-allocation

arrays and matrices are the most
important data objects in MATLAB

We discuss briefly:

The key to efficient MATLAB programming
can be summarized in three words:

vectorize, vectorize, vectorize

and avoid all loops

Compare the two alternative computations:

x = [2,-3,4,1,5,8];
y = zeros(size(x));
for n = 1:length(x)

y(n) = x(n)^2;
end

x = [2,-3,4,1,5,8];
y = x.^2;

element-wise exponentiation .^
ordinary exponentiation ^

answer: y = [4,9,16,1,25,64]

>> x = [0 1 2 3 4 5] % row vector
x =

0 1 2 3 4 5

>> x = 0:5 % row vector
x =

0 1 2 3 4 5

>> x = [0 1 2 3 4 5]' % column vector, (0:5)'
x =

0
1
2
3
4
5

the prime operator, ', or transpose, turns row
vectors into column vectors, and vice versa

caveat: ' is actually conjugate transpose,
use dot-prime, .' , for transpose w/o conjugation

>> z = [i; 1+2i; 1-i] % column vector
z =

0 + 1.0000i
1.0000 + 2.0000i
1.0000 - 1.0000i

>> z.' % transpose without conjugation
ans =

0 + 1.0000i 1.0000 + 2.0000i 1.0000 - 1.0000i

>> z' % transpose with conjugation
ans =

0 - 1.0000i 1.0000 - 2.0000i 1.0000 + 1.0000i

>> (z.')' % same as (z').' , or, conj(z)
ans =

0 - 1.0000i
1.0000 - 2.0000i
1.0000 + 1.0000i

about linspace:

x = linspace(a,b,N+1);

is equivalent to:

x = a : (b-a)/N : b;

i.e., N+1 equally-spaced points in the interval [a,b]
or, dividing [a,b] into N equal sub-intervals

>> x = 0 : 0.2 : 1 % in general, x = a:s:b
>> x = linspace(0,1,6) % see also logspace
x =

0 0.2000 0.4000 0.6000 0.8000 1.0000

step
increment

6 points, 5 subintervals

>> x = 0 : 0.3 : 1
x =

0 0.3 0.6 0.9

>> x = 0 : 0.4 : 1
x =

0 0.4 0.8

>> x = 0 : 0.7 : 1
x =

0 0.7

% before rounding, (b-a)/s was in the three cases:
% 1/0.3 = 3.3333, 1/0.4 = 2.5, 1/0.7 = 1.4286

x = a : s : b;

the number of subintervals
within [a,b] is obtained by
rounding (b-a)/s, down
to the nearest integer,

N = floor((b-a)/s);

length(x) is equal to N+1

x(n) = a + s*(n-1),
n = 1,2,...,N+1

step increment

Note: MATLAB array indices always start with 1
and may not be 0 or negative

>> x = [2, 5, -6, 10, 3, 4];

x(1), x(2), x(3), x(4), x(5), x(6)

Other languages, such as C/C++ and Fortran, allow
indices to start at 0. For example, the same array
would be declared/defined in C as follows:

double x[6] = { 2, 5, -6, 10, 3, 4 };

x[0], x[1], x[2], x[3], x[4], x[5]

exception:
logical indexing,
discussed later

accessing array entries:

>> x = [2, 5, -6, 10, 3, 4]
x =

2 5 -6 10 3 4

>> length(x) % length of x, see also size(x)
ans =

6

>> x(1) % first entry
ans =

2

>> x(3) % third entry
ans =

-6

>> x(end) % last entry – need not know length
ans =

4

accessing array entries:

>> x(end-3:end) % x = [2, 5, -6, 10, 3, 4]
ans =

-6 10 3 4 % last four

>> x(3:5) % list third-to-fifth entries
ans =

-6 10 3

>> x(1:3:end) % every third entry
ans =

2 10

>> x(1:2:end) % every second entry
ans =

2 -6 3

accessing array entries:

>> x = [2, 5, -6, 10, 3, 4];

>> x(end:-1:1) % list backwards, same as fliplr(x)
ans =

4 3 10 -6 5 2

>> x([3,1,5]) % list [x(3),x(1),x(5)]
ans =

-6 2 3

>> x(end+3) = 8
x =

2 5 -6 10 3 4 0 0 8

automatic memory re-allocation

automatic memory allocation and de-allocation:

>> clear x

>> x(3) = -6
x =

0 0 -6

>> x(6) = 4
x =

0 0 -6 0 0 4

>> x(end) = [] % delete last entry
x =

0 0 -6 0 0

>> x = [2, 5, -6, 10, 3, 4];
>> x(3)=[] % delete third entry
x =

2 5 10 3 4

pre-allocation

>> clear x
>> x = zeros(1,6) % 1x6 array of zeros
x =

0 0 0 0 0 0

>> x = zeros(6,1) % 6x1 array of zeros
x =

0
0
0
0
0
0

>> help zeros
>> help ones

clear x;
for k=[3,7,10] % k runs successively through

x(k) = 3 + 0.1*k; % the values of [3,7,10]
disp(x); % diplay current vector x

end

0.0 0.0 3.3
0.0 0.0 3.3 0.0 0.0 0.0 3.7
0.0 0.0 3.3 0.0 0.0 0.0 3.7 0.0 0.0 4.0

x = zeros(1,10); % pre-allocate x to length 10
for k=[3,7,10]

x(k) = 3 + 0.1*k;
disp(x);

end

0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 3.3 0.0 0.0 0.0 3.7 0.0 0.0 0.0
0.0 0.0 3.3 0.0 0.0 0.0 3.7 0.0 0.0 4.0

illustrating dynamic allocation & pre-allocation

First assignment will be posted on the course
website on Saturday 28.10.2017

Due date: Wednesday 1.11.2017 11:55 PM

Try to use LaTeX for generating your report
and send me the PDF

Recommended: Use the Overleaf online
website for generating latex documents:
https://www.overleaf.com

https://www.latex-project.org/about/
https://www.overleaf.com/

	���Introduction to Applied Scientific Computing using MATLAB��Mohsen Jenadeleh
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	1. MATLAB Desktop�
	2. MATLAB Desktop�
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	How Computers Store Variables
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Numeric Data Types
	Why should I care how data� is stored in a computer?
	Why should I care how data� is stored in a computer?
	Comments
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	ASCII Code
	ASCII Code
	Strings in MATLAB
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49

