Digital Signal Processing

WS 2017 Lab Sheet 1

Due date: 05.11.2017

Exercise 1:

10 Points

Simplify the following complex terms and give the result in both cartesian and polar form.

a. $z = \frac{2}{(1-j)(1+j)}$	(1)
b. $z = (1 - j)^{43}$	(2)
c. $\frac{z-1}{z+1}, z \in \mathbb{C} \setminus \{-1\}.$	(3)
d. $z = \frac{2-j3}{5+j12}$	(2)
e. $z = 2e^{-32\pi j/3}$	(2)

Exercise 2:

8 Points

- a. Find an identity for $\sin(3\Phi)$ using n = 3 in De Moivre's formula. Write your identity in a way that involves only $\sin(\Phi)$ and $\sin^3(\Phi)$ if possible. (3)
- b. Show the same as in a, but for $\cos(3\Phi)$ and use double angle formulas (2Φ) instead of De Moivre's formula. (3)

c. Show, that $\cos(\phi) = \frac{1}{2} \left(e^{j\phi} + e^{-j\phi} \right)$ Find a similar expression for $\sin(\phi)$. (2)

8 Points

Solve the following equations for $z \in \mathbb{C}$.

a. $z^2 + 2z + 2 = 0$	(1)
b. $z^2 + 2jz = 1$	(1)
c. $z^3 = -8$	(2)
d. $z^3 = 8j$	(2)
e. $z^n = 1 - j, n \in \mathbb{N}$	(2)

Maximal score:

26 Points

$27\mathrm{th}$ October 2017

Matlab Introduction

Practise 1:

0 Points

Find a short expression, which creates the matrix

Hint: :-operator

Practise 2:

Find a short expression, which creates the matrixes

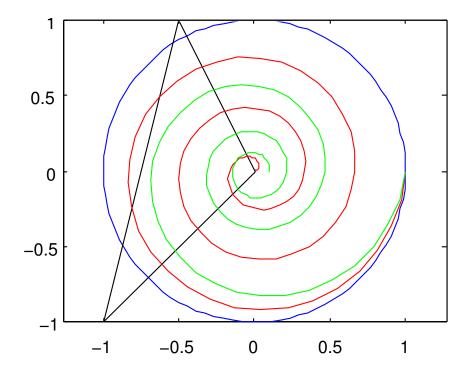
by multiplication of two vectors.

0 Points

Practise 3:

0 Points

Check your solutions from Exercise 3 with the Matlab-function *roots*.


Practise 4:

0 Points

Plot the following shapes in one figure using the Matlab plot command with complex numbers as arguments.

- a. Plot a blue unit circle.
- b. Plot a black triangle that visualizes the addition $z_1 + z_2 = z_3$ with $z_1 = -1 j$ and $z_2 = 0.5 + 2j$.
- c. Plot a red spiral starting at the origin. The distance d to the origin grows linearly with the angle and has 3 rotations within the unit circle.
- d. Plot a green spiral. Now d grows exponentially with the angle, has again 3 rotations and starts at $\frac{1}{10} + j0$.

The result should look like this:

