Digital Signal Processing

WS 2017 Lab Sheet 1
Due date: 05.11.2017

Exercise 1:

10 Points

Simplify the following complex terms and give the result in both cartesian and polar form.
a. $z=\frac{2}{(1-\mathrm{j})(1+j)}$
b. $z=(1-j)^{43}$
c. $\frac{z-1}{z+1}, z \in \mathbb{C} \backslash\{-1\}$.
d. $z=\frac{2-\mathrm{j} 3}{5+j 12}$
e. $z=2 \mathrm{e}^{-32 \pi j / 3}$

Exercise 2:

8 Points

a. Find an identity for $\sin (3 \Phi)$ using $n=3$ in De Moivre's formula. Write your identity in a way that involves only $\sin (\Phi)$ and $\sin ^{3}(\Phi)$ if possible.
b. Show the same as in a, but for $\cos (3 \Phi)$ and use double angle formulas (2Φ) instead of De Moivre's formula.
c. Show, that $\cos (\phi)=\frac{1}{2}\left(e^{j \phi}+e^{-\mathrm{j} \phi}\right)$ Find a similar expression for $\sin (\phi)$.

Exercise 3:

8 Points

Solve the following equations for $z \in \mathbb{C}$.
a. $z^{2}+2 z+2=0$
b. $z^{2}+2 j z=1$
c. $z^{3}=-8$
d. $z^{3}=8 j$
e. $z^{n}=1-\mathrm{j}, n \in \mathbb{N}$

Maximal score:

Matlab Introduction

Practise 1:

0 Points
Find a short expression, which creates the matrix

$$
A=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
9 & 7 & 5 & 3 & 1 & -1 \\
4 & 8 & 16 & 32 & 64 & 128
\end{array}\right)
$$

Hint: :-operator

Practise 2:

Find a short expression, which creates the matrixes

$$
\begin{aligned}
& \left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3 \\
4 & 4 & 4
\end{array}\right)
\end{aligned}
$$

by multiplication of two vectors.

Practise 3:

0 Points
Check your solutions from Exercise 3 with the Matlab-function roots.

Practise 4:

Plot the following shapes in one figure using the Matlab plot command with complex numbers as arguments.
a. Plot a blue unit circle.
b. Plot a black triangle that visualizes the addition $z_{1}+z_{2}=z_{3}$ with $z_{1}=-1-j$ and $z_{2}=0.5+2 \mathrm{j}$.
c. Plot a red spiral starting at the origin. The distance d to the origin grows linearly with the angle and has 3 rotations within the unit circle.
d. Plot a green spiral. Now d grows exponentially with the angle, has again 3 rotations and starts at $\frac{1}{10}+\mathrm{j} 0$.
The result should look like this:

