Digital Signal Processing

WS 2017 Lab Sheet 2

Due date: 11.11.2017

Exercise 1: Signal and time transformation 12 Points

Sketch an arbitrary time continuous signal x(t) and the corresponding transformed signal $\tilde{x}(t)$. Make sure that by the choice of your signal x(t) the transformation to the signal $\tilde{x}(t)$ gets obvious.

- a. $\tilde{x}(t) = x(t-2)$
- b. $\tilde{x}(t) = x(1-t)$
- c. $\tilde{x}(t) = x(2t+2)$

d.
$$\tilde{x}(t) = x\left(\frac{t-T}{\tau}\right)$$

Now repeat the same for the time discrete signals x[n] and $\tilde{x}[n]$, where u[n] is the step function and $\delta[n]$ is the impuls function.

- a. $\tilde{x}[n] = (x[n] + x[2-n])u[1-n]$
- b. $\tilde{x}[n] = x[n] (\delta [n+2] \delta [n-1])$

Explain your results!

Exercise 2: Periodic signals

4 Points

Which of the following signals is periodic? Give the reason and, if possible, determine its period.

a. $x[n] = e^{j2\pi n/5}$ b. $x[n] = \sin (\pi n/19)$ c. $x[n] = ne^{j\pi n}$ d. $x[n] = e^{jn}$

Exercise 3: Complex exponential functions 8 Points

- For $y[n] = Ae^z$, if possible, determine the frequency and the phase of the signal.(4)
- Use Matlab to plot the following exponential functions $y[n] = Ae^{z}u[n]$ for $n \in \mathbb{N}^{[-2;10]}$, where u[n] is the step function and $z \in \mathbb{C}$. If possible, plot the envelope.(4)
- a. $A = \frac{1}{2}; z = \frac{n}{2}$
- b. A = 2; z = jn
- c. $A = 1; z = j\frac{2\pi}{3}n$
- d. $A = 1; z = -1 j\pi n$

Maximal score:

24 Points