Digital Signal Processing WS 2017 Lab Sheet 5

Due date: 02.12.2017.

Exercise 1: Difference equation analysis

18 Points
Consider an LTI system defined by the difference equation

$$
y[n]=-2 x[n]+4 x[n-1]-2 x[n-2] .
$$

a. Determine the impulse response of this system.
b. Determine the frequency response of this system. Express your answer in the form

$$
H\left(e^{j w}\right)=A\left(e^{j w}\right) e^{-j w n_{d}},
$$

where $A\left(e^{j w}\right)$ is a real function of ω. Explicitly specify $A\left(e^{j w}\right)$ and the delay n_{d} of this system.
c. Use matlab to plot the magnitude and the phase of this sytem.
d. Suppose that the input to the system is

$$
x_{1}[n]=1+e^{j 0.5 \pi n} \quad-\infty<n<\infty .
$$

Using the frequency response to determine the corresponding output $y_{1}[n]$.
e. Now suppose that the input to the system is

$$
x_{2}[n]=\left(1+e^{j 0.5 \pi n}\right) u[n] \quad-\infty<n<\infty .
$$

Use the defining differene equation or discrete convolution to determine the corresponding output $y_{2}[n]$ for $-\infty<n<\infty$. Compare $y_{1}[n]$ and $y_{2}[n]$. They should be equal for certain values of n. Over what range of values of n are they equal?

Exercise 2: Discrete Time Fourier Transform I

Find the DTFT of the following sequences:
a. $x[n]=\alpha^{n} \sin \left(n \omega_{0}\right) u[n]$ for $|\alpha|<1$
b. $x[n]= \begin{cases}\left(\frac{1}{2}\right)^{n} & \text { if } n=0,2,4, \ldots \\ 0 & \text { else }\end{cases}$
c. $x[n]=3 \delta[n]+2(\delta[n-1]+\delta[n-5])+2(\delta[n-2]+\delta[n-4])$

Maximal score:

