Digital Signal Processing
 WS 2017 Lab Sheet 6

Due date: 09.12.2017

Exercise 1: LTI discrete-time system

An LTI discrete-time system has frequencey response given by

$$
H\left(e^{j w}\right)=\frac{\left(1-j e^{-j w}\right)\left(1+j e^{-j w}\right)}{1-0.8 e^{-j w}}=\frac{1+e^{-j 2 w}}{1-0.8 e^{-j w}}=\frac{1}{1-0.8 e^{-j w}}+\frac{e^{-j 2 w}}{1-0.8 e^{-j w}}
$$

a. Use one of the above forms of the frequency response to obtain an equation for the impulse response $h[n]$ of the system.
b. From the frequency response, determine the difference equation that is satisfied by the input $x[n]$ and the output $y[n]$ of the system.
c. If the input to this sytem is

$$
x[n]=4+2 \cos \left(\omega_{0} n\right) \quad \text { for }-\infty<n<\infty
$$

for what value of ω_{0} will the output be of the form $y[n]=A=$ constant for $-\infty<n<\infty$? What is the constant A ?

Exercise 2: Discrete Time Fourier Transform II

8 Points

a. Determine the Fourier transform of the sequence

$$
r[n]= \begin{cases}1, & 0 \leq n \leq M \tag{2}\\ 0, & \text { otherwise }\end{cases}
$$

b. Consider the sequence

$$
w[n]= \begin{cases}\frac{1}{2}\left(1-\cos \left(\frac{2 \pi n}{M}\right)\right), & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}
$$

Sketch $w[n]$ and express $W\left(e^{\mathrm{j} \omega}\right)$, the Fourier transform of $w[n]$, in terms of $R\left(e^{\mathrm{j} \omega}\right)$, which is the Fourier transform of $r[n]$.
c. Plot the magnitude of $R\left(e^{\mathrm{j} \omega}\right)$ and $W\left(e^{\mathrm{j} \omega}\right)$ for $M=4$.

Exercise 3: Properties of Fourier transform

Let $X\left(e^{j \omega}\right)$ be the Fourier transform of the signal $x[n]$, which is plotted below. Answer the following questions without computing $X\left(e^{j \omega}\right)$ directly:

a. Compute $\left.X\left(e^{j \omega}\right)\right|_{\omega=0}$.
b. Compute $\left.X\left(e^{j \omega}\right)\right|_{\omega=\pi}$.
c. Compute $\int_{-\pi}^{\pi} X\left(e^{j \omega}\right) d \omega$.
d. Determine and sketch the signal, whose Fourier transform is $X\left(e^{-j \omega}\right)$
e. Determine and sketch the signal, whose Fourier transform is $\operatorname{Re}\left(X\left(e^{j \omega}\right)\right)$

