Digital Signal Processing

WS 2017 Lab Sheet
Due date: 13.01.2018

Exercise 1: Ambiguous sampling period

The continuous signal $x_{c}(t)=\sin (20 \pi t)+\cos (40 \pi t)$ is sampled with a period T. We obtain the discrete signal $x_{d}[n]=\sin (0.2 \pi n)+\cos (0.4 \pi n)$.
Give all possible values for T.

Exercise 2: Spectrum of sampled signal

a. Determine the Fourier transform $X(\Omega)$ of a continuous aperiodic signal $x(t)=$ $e^{-100|t|}$

$$
\begin{equation*}
X(\Omega)=\mathcal{F}\left\{e^{-100|t|}\right\}=\int_{-\infty}^{\infty} x(t) e^{-j \Omega t} d t \tag{4}
\end{equation*}
$$

and plot it with Matlab.
b. This signal is sampled at a rate of 500 Hz , which results in the discrete signal $x_{d}[n]$. Determine $X_{d}\left(e^{j \omega}\right)$ and plot it into the same figure. Repeat the same with a sampling frequency of 1000 Hz .

Exercise 3: Finite Dirac Comb

a. Compute the Fourier transform $X_{c}(\mathrm{j} \Omega)$ of the finite dirac comb

$$
x_{c}(t)=\sum_{k=-K}^{K} \delta(t-k)
$$

$$
\begin{equation*}
K \in \mathbb{N} . \tag{4}
\end{equation*}
$$

b. Plot (Matlab) the spectrum for $K=1$ and $K=10$.

Maximal score:

19 Points

