Digital Signal Processing

WS 2017 Lab Sheet

Due date: 13.01.2018

Exercise 1: Ambiguous sampling period

The continuous signal $x_c(t) = \sin(20\pi t) + \cos(40\pi t)$ is sampled with a period T. We obtain the discrete signal $x_d[n] = \sin(0.2\pi n) + \cos(0.4\pi n)$. Give all possible values for T. (3)

Exercise 2: Spectrum of sampled signal

a. Determine the Fourier transform $X(\Omega)$ of a continuous aperiodic signal $x(t) = e^{-100|t|}$

$$X\left(\Omega\right) = \mathcal{F}\left\{e^{-100|t|}\right\} = \int_{-\infty}^{\infty} x\left(t\right) e^{-j\Omega t} dt$$

and plot it with Matlab.

b. This signal is sampled at a rate of 500 Hz, which results in the discrete signal $x_d[n]$. Determine $X_d(e^{j\omega})$ and plot it into the same figure. Repeat the same with a sampling frequency of 1000 Hz. (6)

Exercise 3: Finite Dirac Comb

a. Compute the Fourier transform $X_c(j\Omega)$ of the finite dirac comb

$$x_c(t) = \sum_{k=-K}^{K} \delta(t-k)$$

 $K \in \mathbb{N}.$

b. Plot (Matlab) the spectrum for K = 1 and K = 10.

(4)

(2)

6 Points

(4)

10 Points

Maximal score:

19 Points