In this lecture, slides from MIT, Rutgers and Waterloo University are used to form the lecture slides
Relational and logical operators
Precedence rules
Logical indexing

`find` function

Program flow control

`if` – statements
`switch` – statements

Examples:
piece-wise functions, unit-step function, indicator functions, sinc function
Choose Symbolic or Numeric Arithmetic

<table>
<thead>
<tr>
<th></th>
<th>Symbolic</th>
<th>Variable Precision</th>
<th>Double Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin(\pi)$</td>
<td>$a = \text{sym}(\pi)$, $\sin(a)$</td>
<td>$b = \text{vpa}(\pi)$, $%\text{vpa}(\pi,d)$</td>
<td>π, $\sin(\pi)$</td>
</tr>
<tr>
<td></td>
<td>$a = \pi$, $\text{ans} = 0$</td>
<td>$b = 3.1415926535897932384626433832795$, $\text{ans} = -3.2101083013100396069547145883568e-40$</td>
<td>$\text{ans} = 3.1416$, $\text{ans} = 1.2246e-16$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Round-Off Errors</th>
<th>No, finds exact results</th>
<th>Yes, magnitude depends on precision used (32 default)</th>
<th>Yes, has 16 digits of precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>slowest</td>
<td>Faster, depends on precision used</td>
<td>faster</td>
</tr>
<tr>
<td>Memory Usage</td>
<td>Greatest</td>
<td>Adjustable, depends on precision used</td>
<td>Least</td>
</tr>
</tbody>
</table>
Relational and Logical Operators

Relational and logical functions

- `find`, `logical`, `true`, `false`, `any`, `all`
- `ischar`, `isequal`, `isfinite`, `isinf`, `isinteger`
- `islogical`, `isnan`, `isreal`

```
>> doc is* % list of all 'is' functions
>> help logical % convert to logical
>> help true % logical 1
>> help false % logical 0
>> help relop % relational operators (&,|,...)
>> help ops % same as help /
>> help find % indices of non-zero elements
```

```
>> help precedence % Operator Precedence in MATLAB.
```
Logical Operators

&& logical AND, e.g., A&B, A,B=expressions
|| logical OR, e.g., A|B
~ logical NOT, e.g., ~A
xor exclusive OR, e.g., xor(A,B)
any true if any elements are non-zero
all true if all elements are non-zero

Relational Operators

== equal
~= not equal
< less than
> greater than
<= less than or equal
>= greater than or equal
Operator Precedence in MATLAB (from highest to lowest):

1. transpose (. '), power (. ^), conjugate transpose ('), matrix power (^)
2. unary plus (+), unary minus (-), logical negation (~)
3. multiplication (. *), right division (. /), left division (. \), matrix multiplication (*), matrix right division (/), matrix left division (\)
4. addition (+), subtraction (-)
5. colon operator (:)
6. less than (<), less than or equal to (<=), greater than (>), greater than or equal to (>=), equal to (==), not equal to (~=)
7. element-wise logical AND (&)
8. element-wise logical OR (|)
9. short-circuit logical AND (&&)
10. short-circuit logical OR (| |)

>> help precedence
```plaintext
>> a = [1, 0, 2, -3, 7];
>> b = [3, 4, 2, -1, 7];

>> a == b
ans =
 0 0 1 0 1

>> k = a == b  % clearer notation, k = (a==b)
ans =
 0 0 1 0 1 1

>> class(k)
ans =
    logical

>> a(k)  % logical indexing
ans =
  2 7
```
```matlab
>> a = [1, 0, 2, -3, 7];
>> b = [3, 4, 2, -1, 7];

>> a == b
ans =
    0     0     1     0     1

>> k = a == b  % clearer notation, k = (a==b)
ans =
    0     0     1     0     1

>> i = find(a==b)
using find
i =
  3     5

>> a(i)
regular indexing
ans =
    2     7
``
>> a = [1, 0, 2, -3, 7];
>> b = [3, 4, 2, -1, 7];

>> a == b
ans =
    0   0    1    0    1

>> a ~= b
ans =
    1   1    0    1    0

>> i = find(a~=b)
i =
    1    2    4

>> a(i), b(i)
ans =
    1   0   -3
ans =
    3    4   -1
a = [1, 0, 2, -3, 7];

~a
ans =
0 1 0 0 0

a==0
ans =
0 1 0 0 0

i = find(~a)
i =
2
```matlab
>> a = [1, 0, 2, -3, 7];

>> a~=0
ans =
 1 0 1 1 1

>> ~~a
ans =
 1 0 1 1 1

>> logical(a)
ans =
 1 0 1 1 1

>> i = find(a)
i =
 1 3 4 5

>> a(find(a))
ans =
 1 2 -3 7
```

finds the non-zero entries of 

\[ a \]
case 1: both \texttt{a}, \texttt{b} are vectors

\texttt{a} and \texttt{b} are compared element-wise

\texttt{a} and \texttt{b} are vectors

\texttt{a} and \texttt{b} are compared element-wise
>> a = [1, 0, 2, -3, 7];
>> b = 1;

>> a>=b
ans =
  1  0  1  0  1

>> i = find(a>=b)
i =
  1  3  5

>> a(a>=b), a(find(a>=b)), a(a<b)
ans =
  1  2  7
ans =
  1  2  7
ans =
  0  -3

case 2: a, b are vector, scalar

compare each element of a to the scalar b
>> a = [1, 0, 2, -3, 7];
>> b = [3, 4, 2, -1, 7];

>> a>=1
ans =
    1    0    1    0    1

>> b<=2
ans =
    0    0    1    1    0

>> a>=1 & b<=2 % logical AND
ans =
    0    0    1    0    0

>> a>=1 | b<=2 % logical OR
ans =
    1    0    1    1    1
```matlab
>> a = [1, 3, 4, -3, 7];

>> k = (a>=2), i = find(a>=2)
k =
 0 1 1 0 1
i =
 2 3 5

>> a(i), a(k)
ans =
 3 4 7
ans =
 3 4 7

>> n = [0 1 1 0 1]
>> a(n)
??? Subscript indices must either be real positive integers or logicals.

% but note, a(logical(n)) works
```
more on logical indexing

>> A = [3 4 nan; -5 inf 2]
A =
   3   4   NaN
   -5   Inf    2

>> k = isfinite(A)
k =
   1   1    0
   1    0    1

>> A(k)   % listed column-wise
ans =
   3
   -5
   4
   2

>> A(~k)=0 % set non-finite
A = % entries to zero
   3   4    0
   -5    0    2

>> find(k)
ans =
   1
   2
   3
   6

>> [i,j] = find(k)
[i,j] =
   1   1
   2   1
   1   2
   2   3
$$\begin{bmatrix} 3 & 4 & 0 \\ -5 & 5 & 2 \end{bmatrix}$$

$$A =$$

\begin{array}{ccc}
3 & 4 & 0 \\
-5 & 5 & 2 \\
\end{array}

$$\gg A > 2$$

ans =

\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
\end{array}

$$\gg k = \text{find}(A > 2)$$

k =

\begin{array}{c}
1 \\
3 \\
4 \\
\end{array}

$$\gg [i,j] = \text{find}(A > 2);$$

[i,j] =

\begin{array}{cc}
1 & 1 \\
1 & 2 \\
2 & 2 \\
\end{array}

$$\gg A(\text{find}(A > 2))$$

ans =

\begin{array}{c}
3 \\
4 \\
5 \\
\end{array}$$
find can also be applied to a matrix of characters, e.g., the keypad matrix from week-3

```matlab
t K = ['1' '2' '3'
 '4' '5' '6'
 '7' '8' '9'
 '*' '0' '#'];

>> K == '8'
an s =
 0 0 0
 0 0 0
 0 1 0
 0 0 0

>> [i, j] = find(K == '8')
i =
 3
j =
 2
```

i, j matrix indices of the location of '8'

```
>> q = find(K == '8')
q =
 7
```
q is the column-wise index of '8' in K
A = [9  9  2    B = [7  1  7
  2  5  4         3  4  8
  9  8  9];       9  4  2];

>> A<B
ans =
  0  0  1
  1  0  1
  0  0  0

>> find(A<B)
ans =
  2
  7
  8

[i,j]=find(A<B)
i =   j =
  2     1
  1     3
  2     3

>> A==9
ans =
  1  1  0
  0  0  0
  1  0  1

>> find(A==9)
ans =
  1
  3
  4
  9

>> A(A==9)=-9
A =
  -9  -9  2
  1   3
  4
  -9  8  -9
\[
A = \begin{bmatrix} 9 & 9 & 2 \\ 2 & 5 & 4 \\ 9 & 8 & 9 \end{bmatrix}; \\
B = \begin{bmatrix} 7 & 1 & 7 \\ 3 & 4 & 8 \\ 9 & 4 & 2 \end{bmatrix};
\]

\[
\text{any}(A==2) \\
\text{ans} = \\
\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}
\]

\[
\text{any}(A==2,2) \\
\text{ans} = \\
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}
\]

\[
\text{all}(A>B) \\
\text{ans} = \\
\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}
\]

\[
\text{all}(A>B,2) \\
\text{ans} = \\
\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\]

\[
\text{A==B} \\
\text{ans} = \\
\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}
\]

\[
\text{any}(\text{A==B}) \\
\text{ans} = \\
\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}
\]

\[
\text{any(any(A==B))} \\
\text{ans} = \\
\begin{bmatrix} 1 \end{bmatrix}
\]

\[
\text{all}(\text{all(A==B)});
\]

\textit{any, all} operate column-wise, or, row-wise with extra argument
>> A = [36 -4 9; 16 9 -25], B = A;
A =
  36   -4     9
  16     9   -25

>> k = (B>=0)
k =
  1     0     1
  1     1     0

Example:
take square-roots of the absolute values, but preserve the signs

>> B(k) = sqrt(B(k));
>> B(~k) = -sqrt(-B(~k))
B =
  6    -2     3
  4     3    -5
Comparing Strings

Strings are arrays of characters, so the condition `s1==s2` requires both `s1` and `s2` to have the same length.

```matlab
>> s1 = 'short'; s2 = 'shore';
>> s1==s1
ans =
 1 1 1 1 1 1 1 1

>> s1==s2
ans =
 1 1 1 1 0 0 0 0

>> s1 = 'short'; s2 = 'long';
>> s1==s2
??? Error using ==> eq
Matrix dimensions must agree.
```
Comparing Strings

Use `strcmp` to compare strings of unequal length, and get a binary decision.

```matlab
>> s1 = 'short'; s2 = 'shore';
>> strcmp(s1,s1)
ans =
 1
>> strcmp(s1,s2)
ans =
 0
```

Use `isequal` to compare the contents of matrices or arrays and get a binary decision.

```matlab
>> s1 = 'short'; s2 = 'long';
>> strcmp(s1,s2)
ans =
 0
```
Program Flow Control

Program flow is controlled by the following control structures:

1. for . . . end
2. while . . . end
3. break, continue
4. if . . . end
5. if . . . else . . . end
6. if . . . elseif . . . else . . . end
7. switch . . . case . . . otherwise . . . end
8. return

for-loops and conditional ifs are by far the most commonly used control structures
three forms of if statements

if condition
    statements ...
end

if condition
    statements ...
else
    statements ...
end

if condition1
    statements ...
elseif condition2
    statements ...
elseif condition3
    statements ...
else
    statements ...
end

several elseif statements may be present,

elseif does not need a matching end
```matlab
>> x = 1;
>> x = 0/0
>> x = 1/0

if isinf(x),
 disp('x is infinite');
elseif isnan(x),
 disp('x is not-a-number');
else
 disp('x is finite number');
end

x is finite number
% x is not-a-number
% x is infinite
```
switch expression0

  case expression1
    statements ...
  
  case expression2
    statements ...
  
  otherwise
    statements ...

end

expression0 is evaluated first, and if its value matches any of the cases expression1, expression2, ..., then the corresponding case statements are executed.

several case statements may be present.

equation comparison rules:

numbers: isequal(expression0, expression1)
strings: strcmp(expression0, expression1)
x = [1, 4, -5, 3];

p = inf;
% p = 1;
% p = 2;

switch p
    case 1
        N = sum(abs(x)); % N = norm(x,1);
    case 2
        N = sqrt(sum(abs(x).^2)); % N = norm(x,2);
    case inf
        N = max(abs(x)); % N = norm(x,inf);
    otherwise
        N = sqrt(sum(abs(x).^2)); % N = norm(x,2);
end

>> N
N =
    5
Example: $L_1$, $L_2$, and $L_\infty$ norms of a vector

$$\mathbf{x} = [x_1, x_2, \ldots, x_N]$$

$$\|\mathbf{x}\|_1 = \sum_{n=1}^{N} |x_n|$$

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{n=1}^{N} |x_n|^2}$$

$$\|\mathbf{x}\|_\infty = \max(|x_1|, |x_2|, \ldots, |x_N|)$$

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$$

used as distance measure between two vectors or matrices

>> help norm % vector and matrix norms
Example: unit-step function

\[ u(x) = \begin{cases} 1, & x \geq 0 \\ 0, & \text{otherwise} \end{cases} \]

\[ u = @(x) \text{ (x}\geq\text{0)}; \quad \% \text{unit-step function} \]

e.g., \( x = -3, -2, -1, 0, 1, 2, 3 \)
\[ u(x) = 0, 0, 0, 1, 1, 1, 1, 1 \]

Example: indicator function

\[ v(x, a, b) = u(x - a) - u(x - b) \]

\[ v = @(x,a,b) \text{ u(x-a)-u(x-b); } \quad \% \text{indicator} \]
\[ \% v = @(x,a,b) \text{ (x}\geq\text{a & x<}b); \quad \% \text{alternative} \]
Example: Defining piece-wise functions (method 1)

\[ f(x) = \begin{cases} 
 2x, & 0 \leq x \leq 0.5 \\
 1, & 0.5 \leq x \leq 1.5 \\
 4 - 2x, & 1.5 \leq x \leq 2 
\end{cases} \]

\[ \nu(x, a, b) = \begin{cases} 
 1, & a \leq x < b \\
 0, & \text{otherwise}
\end{cases} = \text{(indicator function)} \]

\[ f(x) = 2x \nu(x, 0, 0.5) + \nu(x, 0.5, 1.5) + (4 - 2x) \nu(x, 1.5, 2) \]
Anonymous Function
- is a function that is *not* stored in a program file
- can accept inputs and return outputs
- they can contain only a single executable statement.
Understanding the conditions \((x\geq 0 \& x<0.5)\), etc.

\[
x = [-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 \ldots \\
\quad 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 \ldots \\
\quad 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 \ldots \\
\quad 1.9 2.0 2.1 2.2 2.3 2.4 2.5]\;
\]

\((x\geq 0 \& x<0.5)\)
\[
\text{ans} = \\
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\]

\((x\geq 0.5 \& x<1.5)\)
\[
\text{ans} = \\
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\]

\((x\geq 1.5 \& x<2)\)
\[
\text{ans} = \\
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
\]
\[ g(c) = \int_{0}^{1} (x^2 + cx + 1) \, dx \]

\[
g = @(c) \text{integral}(@(x) (x.^2 + c*x + 1),0,1));
\]

Write the integrand as an anonymous function,
\[
@(x) (x.^2 + c*x + 1)
\]

Evaluate the function from zero to one by passing the function handle to integral,
\[
\text{integral}(@(x) (x.^2 + c*x + 1),0,1)
\]

Supply the value for \(c\) by constructing an anonymous function for the entire equation
\[
g = @(c) \text{integral}(@(x) (x.^2 + c*x + 1),0,1));
\]

The final function allows you to solve the equation for any value of \(c\).
\[
g(2)
\]
\[
\text{ans} = 2.3333
\]
Using the indicator function

\[ v = @(x,a,b) ((x]>=a) \& (x<b)); \]

\[ f = @(x) 2*x .* v(x, 0, 0.5) + ... \\
\quad v(x, 0.5, 1.5) + ... \\
\quad (4-2*x).* v(x, 1.5, 2); \]
function y = f(x)

y = zeros(size(x));

i1 = find(x>=0 & x<0.5);
y(i1) = 2*x(i1);

i2 = find(x>=0.5 & x<1.5);
y(i2) = 1;

i3 = find(x>=1.5 & x<2);
y(i3) = 4-2*x(i3);
\[ x = \text{linspace}(-0.5, 2.5, 301); \]
\[ y = f(x); \]

\text{figure}; \ \text{plot}(x, y, 'b-');

\text{axis}([-0.5 2.5 0 1.2]);
\text{xlabel('x-axis')} \\
\text{ylabel('y-axis')} \\
\text{xlim}([-0.5 1]) \\
\text{ylim}([0 2])
Example: Defining piece-wise functions (method 3)

\[
\text{function } y = f(x) \\
\text{if } x \geq 0 \text{ and } x < 0.5 \\
\quad y = 2x; \\
\text{elseif } x \geq 0.5 \text{ and } x < 1.5 \\
\quad y = 1; \\
\text{elseif } x \geq 1.5 \text{ and } x < 2 \\
\quad y = 4 - 2x; \\
\text{else} \\
\quad y = 0; \\
\text{end}
\]

\text{pitfall: function produces wrong results if applied to a vector } x, \text{ why?}
\begin{verbatim}
x = linspace(-0.5,2.5,301);

for n=1:length(x)
    y(n) = f(x(n));
end

figure; plot(x,y, 'b-');
yaxis(0,1.2, 0:0.5:1)
xaxis(-0.5,2.5, -0.5:0.5:2.5);
xlabel('\textit{x}');
\end{verbatim}

apply function separately to each element of \textbf{x}, instead of the whole \textbf{x}
\texttt{x = linspace(-0.5, 2.5, 301);}

\texttt{for n=1:length(x)}
\begin{itemize}
\item \texttt{if x(n) >= 0 \& x(n) < 0.5}
  \begin{itemize}
  \item \texttt{y(n) = 2*x(n);}
  \end{itemize}
\item \texttt{elseif x(n) >= 0.5 \& x(n) < 1.5}
  \begin{itemize}
  \item \texttt{y(n) = 1;}
  \end{itemize}
\item \texttt{elseif x(n) >= 1.5 \& x(n) < 2}
  \begin{itemize}
  \item \texttt{y(n) = 4 - 2*x(n);}
  \end{itemize}
\item \texttt{else}
  \begin{itemize}
  \item \texttt{y(n) = 0;}
  \end{itemize}
\end{itemize}
\texttt{end}
\texttt{end}

\texttt{figure; plot(x, y, 'b-');}
\texttt{yaxis(0, 1.2, 0:0.5:1)}
\texttt{xaxis(-0.5, 2.5, -0.5:0.5:2.5);}
\texttt{xlabel('\textit{x}');}

\textcolor{green}{\textbf{direct implementation using if-elseif statements within a for-loop}}
\[ f = @(x) 2 \times x \times (x \geq 0 \land x < 0.5) + \ldots \\ \phantom{f = @(x)} (x \geq 0.5 \land x < 1.5) + \ldots \\ \phantom{f = @(x)} (4 - 2 \times x) \times (x \geq 1.5 \land x < 2); \]

\( x = \text{linspace}(0, 10, 501); \)

\textbf{figure; plot}(x, f(x) + f(x - 3) + f(x - 5), 'b-');

replicating \( f(x) \)
Example: Evaluating the sinc function

```matlab
function y = my_sinc(x)
 y = sin(pi*x)./(pi*x);
 y(isinf(x)) = 0;
 y(x==0) = 1;
```

Note: built-in `sinc` function returns `NaN` when `x=inf`
x = [0, 0, inf, 0, nan];
y = sin(pi*x)./(pi*x)
y =
    NaN   NaN   NaN   NaN   NaN
isinf(x)
ans =
    0     0     1     0     0
y(isinf(x)) = 0
y =
    NaN   NaN   0   NaN   NaN
x==0
ans =
    1     1     0     1     0
y(x==0) = 1
y =
    1     1     0     1   NaN